已知a、b、c為ABC的三邊,且關(guān)于x的一元二次方程(c-b)x2+2(b-a)x+(a-b)=0有兩個(gè)相等的實(shí)根,則這個(gè)三角形是(  )
A.等邊三角形B.直角三角形
C.等腰三角形D.不等邊三角形
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在平面直角坐標(biāo)系中,△ABC為等腰三角形,直線AC解析式為y=-2x+6,精英家教網(wǎng)將△AOC沿直線AC折疊,點(diǎn)O落在平面內(nèi)的點(diǎn)E處,直線AE交x軸于點(diǎn)D.
(1)求直線AD解析式;
(2)動(dòng)點(diǎn)P以每秒1個(gè)單位的速度,從點(diǎn)B出發(fā)沿著x軸正方向勻速運(yùn)動(dòng),點(diǎn)Q是射線CE上的點(diǎn),且∠PAQ=∠BAC,設(shè)P運(yùn)動(dòng)時(shí)間為t秒,求△POQ的面積S與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,直線CE上是否存在一點(diǎn)F,使以點(diǎn)F、A、D、P為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t值及Q點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC的三邊a、b、c的值都是正數(shù),且a=b-1、c=b+1,又已知關(guān)于x的方程x2-5x+
14
b+3=0的一個(gè)根恰好為b的值,求cosA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,△ABC為等邊三角形,AB=4
3
,AH⊥BC,垂足為點(diǎn)H,點(diǎn)D在線段HC上,且HD=2,點(diǎn)P為射線AH上任意一點(diǎn),以點(diǎn)P為圓心,線段PD的長為半徑作⊙P,設(shè)AP=x.精英家教網(wǎng)
(1)當(dāng)x=3時(shí),求⊙P的半徑長;
(2)如圖1,如果⊙P與線段AB相交于E、F兩點(diǎn),且EF=y,求y關(guān)于x的函數(shù)解析式,并寫出它的定義域;
(3)如果△PHD與△ABH相似,求x的值(直接寫出答案即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:△ABC的兩邊AB、AC的長是關(guān)于x的一元二次方程x2-(2k+3)x+p=0的兩個(gè)實(shí)數(shù)根且p,k的函數(shù)關(guān)系如圖所示,第三邊BC的長為5.
(1)求出以k為自變量的p的函數(shù)關(guān)系式.
(2)k為何值時(shí),△ABC是以BC為斜邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在平面直角坐標(biāo)系中,△ABC為等腰三角形,直線AC解析式為y=-2x+6,將△AOC沿直線AC折疊,點(diǎn)O落在平面內(nèi)的點(diǎn)E處,直線AE交x軸于點(diǎn)D.
(1)求直線AD解析式;
(2)動(dòng)點(diǎn)P以每秒1個(gè)單位的速度,從點(diǎn)B出發(fā)沿著x軸正方向勻速運(yùn)動(dòng),點(diǎn)Q是射線CE上的點(diǎn),且∠PAQ=∠BAC,設(shè)P運(yùn)動(dòng)時(shí)間為t秒,求△POQ的面積S與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,直線CE上是否存在一點(diǎn)F,使以點(diǎn)F、A、D、P為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t值及Q點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,在平面直角坐標(biāo)系中,△ABC為等腰三角形,直線AC解析式為y=-2x+6,將△AOC沿直線AC折疊,點(diǎn)O落在平面內(nèi)的點(diǎn)E處,直線AE交x軸于點(diǎn)D.
(1)求直線AD解析式;
(2)動(dòng)點(diǎn)P以每秒1個(gè)單位的速度,從點(diǎn)B出發(fā)沿著x軸正方向勻速運(yùn)動(dòng),點(diǎn)Q是射線CE上的點(diǎn),且∠PAQ=∠BAC,設(shè)P運(yùn)動(dòng)時(shí)間為t秒,求△POQ的面積S與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,直線CE上是否存在一點(diǎn)F,使以點(diǎn)F、A、D、P為頂點(diǎn)的四邊形是平行四邊形?若存在,求出t值及Q點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:△ABC的兩邊AB、AC的長是關(guān)于x的一元二次方程x2-(2k+3)x+p=0的兩個(gè)實(shí)數(shù)根且p,k的函數(shù)關(guān)系如圖所示,第三邊BC的長為5.
(1)求出以k為自變量的p的函數(shù)關(guān)系式.
(2)k為何值時(shí),△ABC是以BC為斜邊的直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知△ABC的三邊a、b、c的值都是正數(shù),且a=b-1、c=b+1,又已知關(guān)于x的方程x2-5x+數(shù)學(xué)公式b+3=0的一個(gè)根恰好為b的值,求cosA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2001年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

已知△ABC的三邊a、b、c的值都是正數(shù),且a=b-1、c=b+1,又已知關(guān)于x的方程x2-5x+b+3=0的一個(gè)根恰好為b的值,求cosA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在△ABC中,a、b、c分別是∠A、∠B、∠C的對(duì)邊,且a、b是關(guān)于x的一元二次方程x2+4(c+2)=(c+4)x的兩個(gè)根,點(diǎn)D在AB上,以BD為直徑的⊙O切AC于點(diǎn)E,
(1)求證:△ABC是直角三角形;
(2)若tanA=
34
,求AE的長.

查看答案和解析>>


同步練習(xí)冊(cè)答案