三角形的三邊長(zhǎng)分別為a2+b2、2ab、a2-b2(a、b都是正整數(shù)),則這個(gè)三角形是( 。
A.直角三角形B.鈍角三角形C.銳角三角形D.不能確定
A
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、三角形的三邊長(zhǎng)分別為a2+b2、2ab、a2-b2(a、b都是正整數(shù)),則這個(gè)三角形是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年蘇教版初中數(shù)學(xué)八年級(jí)上2.2神秘的數(shù)組練習(xí)卷(解析版) 題型:選擇題

三角形的三邊長(zhǎng)分別為 a2+b2、2ab、a2-b2(a、b都是正整數(shù)),則這個(gè)三角形是(  )

A.直角三角形       B.鈍角三角形      

C.銳角三角形       D.不能確定

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

三角形的三邊長(zhǎng)分別為a2+b2、2ab、a2-b2(a、b都是正整數(shù)),則這個(gè)三角形是(  )
A.直角三角形B.鈍角三角形C.銳角三角形D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

三角形的三邊長(zhǎng)分別為a2+b2、2ab、a2-b2(a、b都是正整數(shù)),則這個(gè)三角形是


  1. A.
    直角三角形
  2. B.
    鈍角三角形
  3. C.
    銳角三角形
  4. D.
    不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:同步題 題型:單選題

三角形的三邊長(zhǎng)分別為 a2+b2、2ab、a2-b2(a、b都是正整數(shù)),則這個(gè)三角形是

[     ]

A.直角三角形
B.鈍角三角形
C.銳角三角形
D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用四個(gè)完全一樣的邊長(zhǎng)分別為a、b、c的直角三角板拼成圖所示的圖形,則下列結(jié)論中正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用四個(gè)完全一樣的邊長(zhǎng)分別為a、b、c的直角三角板拼成圖所示的圖形,則下列結(jié)論中正確的是( 。
A.c2=(a+b)2B.c2=a2+2ab+b2
C.c2=a2-2ab+b2D.c2=a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

用四個(gè)完全一樣的邊長(zhǎng)分別為a、b、c的直角三角板拼成圖所示的圖形,則下列結(jié)論中正確的是


  1. A.
    c2=(a+b)2
  2. B.
    c2=a2+2ab+b2
  3. C.
    c2=a2-2ab+b2
  4. D.
    c2=a2+b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有如圖1的8張大小形狀相同的直角三角形紙片,三邊長(zhǎng)分別是a、b、c.用其中4張紙片拼成如圖2的大正方形(空白部分是邊長(zhǎng)分別為a和b的正方形);用另外4張紙片拼成如圖3的大正方形(中間的空白部分是邊長(zhǎng)為c的正方形).

(一)觀察:
從整體看,圖2和圖3的大正方形的面積都可以表示為(a+b)2,結(jié)論①依據(jù)整個(gè)圖形的面積等于各部分面積的和.
圖2中的大正方形的面積又可以用含字母a、b的代數(shù)式表示為:
a2+b2+2ab
a2+b2+2ab
,結(jié)論②
圖3中的大正方形的面積又可以用含字母a、b、c的代數(shù)式表示為:
c2+2ab
c2+2ab
,結(jié)論③
(二)思考:
結(jié)合結(jié)論①和結(jié)論②,可以得到一個(gè)等式
(a+b)2=a2+b2+2ab
(a+b)2=a2+b2+2ab
;
結(jié)合結(jié)論②和結(jié)論③,可以得到一個(gè)等式
a2+b2=c2
a2+b2=c2
;
(三)應(yīng)用:
請(qǐng)你運(yùn)用(二)中得到的結(jié)論任意選擇下列兩個(gè)問(wèn)題中的一個(gè)解答:
(1)求1.462+2×1.46×2.54+2.542的值;
(2)若分別以直角三角形三邊為直徑,向外作半圓(如圖4),三個(gè)半圓的面積分別記作S1、S2、S3,且S1+S2+S3=20,求S2的值.
(四)延伸(本題作為附加題,做對(duì)加2分)
若分別以直角三角形三邊為直徑,向上作三個(gè)半圓(如圖5),直角邊a=5,b=12,斜邊c=13,則表示圖中陰影部分面積和的數(shù)值是:
A
A
  A.有理數(shù)     B.無(wú)理數(shù)     C.無(wú)法判斷
請(qǐng)作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鹽都區(qū)一模)問(wèn)題提出
我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問(wèn)題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問(wèn)題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過(guò)作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問(wèn)題解決
如圖1,把邊長(zhǎng)為a+b(a≠b)的大正方形分割成兩個(gè)邊長(zhǎng)分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知:多項(xiàng)式M=2a2-a+1,N=a2-2a.試比較M與N的大小.
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補(bǔ)成長(zhǎng)方形,使得△ABC的兩個(gè)頂
點(diǎn)為長(zhǎng)方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長(zhǎng)方形的這一邊的對(duì)邊上.
①這樣的長(zhǎng)方形可以畫(huà)
3
3
個(gè);
②所畫(huà)的長(zhǎng)方形中哪個(gè)周長(zhǎng)最。繛槭裁?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫(huà)其BC邊上的內(nèi)接正方形EFGH,使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫(huà)AC、AB邊上的內(nèi)接正方形,問(wèn)哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>


同步練習(xí)冊(cè)答案