函數(shù)y=sin(2x+
1
2
π)
的圖象的一個(gè)對稱中心是( 。
A.(-
π
2
,0)
B.(-
π
4
,0)
C.(
π
8
,0)
D.(
2
,0)
B
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin(2x+
1
2
π)
的圖象的一個(gè)對稱中心是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=sin(2x+
1
2
π)
的圖象的一個(gè)對稱中心是(  )
A.(-
π
2
,0)
B.(-
π
4
,0)
C.(
π
8
,0)
D.(
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①函數(shù)y=sin(2x+
π
3
)的單調(diào)減區(qū)間為[kπ+
π
12
,kπ+
12
],k∈Z;
②函數(shù)y=
3
cos2x-sin2x圖象的一個(gè)對稱中心為(
π
6
,0);
③函數(shù)y=sin(
1
2
x-
π
6
)在區(qū)間[-
π
3
,
11π
6
]上的值域?yàn)閇-
3
2
,
2
2
];
④函數(shù)y=cosx的圖象可由函數(shù)y=sin(x+
π
4
)的圖象向右平移
π
4
個(gè)單位得到;
⑤若方程sin(2x+
π
3
)-a=0在區(qū)間[0,
π
2
]上有兩個(gè)不同的實(shí)數(shù)解x1,x2,則x1+x2=
π
6

其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題:
①函數(shù)y=sin(2x+
π
3
)的單調(diào)減區(qū)間為[kπ+
π
12
,kπ+
12
],k∈Z;
②函數(shù)y=
3
cos2x-sin2x圖象的一個(gè)對稱中心為(
π
6
,0);
③函數(shù)y=sin(
1
2
x-
π
6
)在區(qū)間[-
π
3
,
11π
6
]上的值域?yàn)閇-
3
2
,
2
2
];
④函數(shù)y=cosx的圖象可由函數(shù)y=sin(x+
π
4
)的圖象向右平移
π
4
個(gè)單位得到;
⑤若方程sin(2x+
π
3
)-a=0在區(qū)間[0,
π
2
]上有兩個(gè)不同的實(shí)數(shù)解x1,x2,則x1+x2=
π
6

其中正確命題的序號為 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列五個(gè)命題中,
①函數(shù)y=sin(
2
-2x)是偶函數(shù);
②已知cosα=
1
2
,且α∈[0,2π],則α的取值集合是{
π
3
};
③直線x=
π
8
是函數(shù)y=sin(2x+
4
)圖象的一條對稱軸;
④△ABC中,若cosA>cosB,則A<B;  ⑤函數(shù)y=|cos2x+
1
2
|的周期是
π
2

把你認(rèn)為正確的命題的序號都填在橫線上
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在下列五個(gè)命題中,
①函數(shù)y=sin(
2
-2x)是偶函數(shù);
②已知cosα=
1
2
,且α∈[0,2π],則α的取值集合是{
π
3
};
③直線x=
π
8
是函數(shù)y=sin(2x+
4
)圖象的一條對稱軸;
④△ABC中,若cosA>cosB,則A<B;  ⑤函數(shù)y=|cos2x+
1
2
|的周期是
π
2
;
把你認(rèn)為正確的命題的序號都填在橫線上______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題
①函數(shù)y=tan(3x-
π
2
)
的周期是
π
3
;
②角α終邊上一點(diǎn)P(-3a,4a),且a≠0,那么cosα=-
3
5
;
③函數(shù)y=cos(2x-
π
3
)
的圖象的一個(gè)對稱中心是(-
π
12
,0)
;
④已知f(x)=sin(ωx+2)滿足f(x+2)+f(x)=0,則ω=
π
2

其中正確的個(gè)數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個(gè)命題:
①函數(shù)f(x)=sin(
π
3
-2x)的一個(gè)增區(qū)間是[
12
11π
12
];
②若函數(shù)f(x)=sin(ωx+φ)為奇函數(shù),則φ為π的整數(shù)倍;
③對于函數(shù)f(x)=tan(2x+
π
3
),若f(x1)=f(x2),則x1-x2必是π的整數(shù)倍;
④函數(shù)y=2sin(2x+
π
3
)的圖象關(guān)于點(diǎn)(
π
3
,0)對稱.
其中正確的命題是
 
.(填上正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=2sin(2x-
π
3
)
的一條對稱軸是x=
12
;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(
π
2
,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z.
以上四個(gè)命題中正確的有
 
(填寫正確命題前面的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個(gè)結(jié)論:
①函數(shù)y=2sin(2x-
π
3
)
有一條對稱軸是x=
12
;
②函數(shù)y=tanx的圖象關(guān)于點(diǎn)(
π
2
,0)對稱;
③正弦函數(shù)在第一象限為增函數(shù);
④要得到y=3sin(2x+
π
4
)
的圖象,只需將y=3sin2x的圖象左移
π
4
個(gè)單位;
⑤若sin(2x1-
π
4
)=sin(2x2-
π
4
)
,則x1-x2=kπ,其中k∈Z;
其中正確的有
①②
①②
.(填寫正確結(jié)論前面的序號)

查看答案和解析>>


同步練習(xí)冊答案