圓心在P(-1,2),半徑是2的圓的標(biāo)準(zhǔn)方程是( 。
A.(x-1)2+(y-2)2=2B.(x+1)2+(y-2)2=4
C.(x-2)2+(y+1)2=4D.(x-1)2+(y-2)2=4
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、圓心在P(-1,2),半徑是2的圓的標(biāo)準(zhǔn)方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

圓心在P(-1,2),半徑是2的圓的標(biāo)準(zhǔn)方程是( 。
A.(x-1)2+(y-2)2=2B.(x+1)2+(y-2)2=4
C.(x-2)2+(y+1)2=4D.(x-1)2+(y-2)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年廣東省佛山市高明區(qū)高一(上)模塊考試數(shù)學(xué)試卷(必修2)(解析版) 題型:選擇題

圓心在P(-1,2),半徑是2的圓的標(biāo)準(zhǔn)方程是( )
A.(x-1)2+(y-2)2=2
B.(x+1)2+(y-2)2=4
C.(x-2)2+(y+1)2=4
D.(x-1)2+(y-2)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

圓心在P(-1,2),半徑是2的圓的標(biāo)準(zhǔn)方程是


  1. A.
    (x-1)2+(y-2)2=2
  2. B.
    (x+1)2+(y-2)2=4
  3. C.
    (x-2)2+(y+1)2=4
  4. D.
    (x-1)2+(y-2)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0108 模擬題 題型:解答題

(1)已知點(diǎn)C 的極坐標(biāo)為(2,),畫圖并求出以C為圓心,半徑r=2的圓的極坐標(biāo)方程(寫出解題過程);
(2)P是以原點(diǎn)為圓心,r=2的圓上的任意一點(diǎn),Q(6,0),M是PQ中點(diǎn)
①畫圖并寫出⊙O的參數(shù)方程;
②當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡的參數(shù)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省南京市蘇州市梁豐高級(jí)中學(xué)高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(1)選修4-2矩陣與變換:
已知矩陣M=,其中a∈R,若點(diǎn)P(1,-2)在矩陣M的變換下得到點(diǎn)P′(-4,0).
①求實(shí)數(shù)a的值;
②求矩陣M的特征值及其對(duì)應(yīng)的特征向量.
(2)選修4-4參數(shù)方程與極坐標(biāo):
已知曲線C的極坐標(biāo)方程是ρ=4cosθ.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是(t是參數(shù)).若l與C相交于AB兩點(diǎn),且
①求圓的普通方程,并求出圓心與半徑;
②求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知半徑為2的圓的圓心C在x軸上,圓心C的橫坐標(biāo)是非負(fù)整數(shù),且與直線4x+3y+10=0相切.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與圓相交于P、Q兩點(diǎn),若
OP
OQ
=-2,求k的值;
(Ⅲ)已知直線l:y=kx+1,過點(diǎn)(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點(diǎn),求四邊形PQMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅省張掖市山丹一中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知半徑為2的圓的圓心C在x軸上,圓心C的橫坐標(biāo)是非負(fù)整數(shù),且與直線4x+3y+10=0相切.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+1與圓相交于P、Q兩點(diǎn),若=-2,求k的值;
(Ⅲ)已知直線l:y=kx+1,過點(diǎn)(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點(diǎn),求四邊形PQMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,半圓形公園上有P和Q兩點(diǎn),線段AB是該半圓的一條直徑,C為圓心,半徑是2km,現(xiàn)要在公園內(nèi)建一塊頂點(diǎn)都在半圓C上的多邊形活動(dòng)場(chǎng)地為等腰梯形ABPQ.
(1)若設(shè)PQ=2x(km),求場(chǎng)地面積S關(guān)于x的函數(shù)關(guān)系式;
(2)若設(shè)∠PCB=θ,求場(chǎng)地面積S關(guān)于θ的函數(shù)關(guān)系式;
(3)選擇(1)、(2)中的一個(gè)函數(shù)的關(guān)系式,求場(chǎng)地面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知半徑為5的圓的圓心在x軸上,圓心的橫坐標(biāo)是整數(shù),且與直線4x+3y-29=0相切.
(1)求圓的方程;
(2)若直線ax-y+5=0(a≠0)與圓相交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過點(diǎn)P(-2,4)的直線l垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案