在△ABC中,角A,B,C所對的邊分別是a,b,c,若acosB=bcosA,則△ABC是( 。
A.等腰三角形B.直角三角形
C.等腰直角三角形D.等腰或直角三角形
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,其中a=2,c=3,且滿足(2a-c)•cosB=b•cosC,則
AB
BC
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且1+
tanA
tanB
=
2c
b

(1)求角A.
(2)若
m
=(0,-1)
,
n
=(cosB,2cos2
C
2
)
,試求|
m
+
n
|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=1,b=
7
,c=
3
,則B=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別是a,b,c,a2+c2-b2=
1
2
ac

(Ⅰ)求sin2
A+C
2
+cos2B
的值;
(Ⅱ)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且C=
3
4
π
sinA=
5
5

(Ⅰ)求cosA,sinB的值;
(Ⅱ)若ab=2
2
,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,S表示△ABC的面積,若acosB+bcosA=csinC,S=
1
4
(b2+c2-a2),則∠B=( 。
A、90°B、60°
C、45°D、30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且a=1,c=
2
,cosC=
3
4

(Ⅰ)求sin(A+B)的值;
(Ⅱ)求sinA的值;
(Ⅲ)求
CB
CA
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,且C=
3
4
π
,sinA=
5
5

(Ⅰ)求sinB的值;
(Ⅱ)若c-a=5-
10
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,滿足sin
A
2
=
5
5
,且△ABC的面積為2.
(Ⅰ)求bc的值;
(Ⅱ)若b+c=6,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知a=2,c=3,B=60°.
(1)求b的值;
(2)求sinA的值;
(3)求sin(2A+C)的值.

查看答案和解析>>


同步練習冊答案