拋物線y=ax2+bx+c(a≠0)的對稱軸是x=2,且經(jīng)過點P(3,0),則a+b+c的值為( ) |
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來源:數(shù)學(xué)教研室
題型:022
拋物線y=ax2+bx+c(a¹0)的頂點在x軸上,對稱軸x=1,并且經(jīng)過點(2,2),則這個拋物線的解析式是________。
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:
若拋物線y=ax
2+bx+c經(jīng)過(0,1)和(2,-3)兩點,且開口向下,對稱軸在y軸左側(cè),則a的取值范圍是
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:填空題
若拋物線y=ax2+bx+c經(jīng)過(0,1)和(2,-3)兩點,且開口向下,對稱軸在y軸左側(cè),則a的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:填空題
若拋物線y=ax2+bx+c經(jīng)過(0,1)和(2,-3)兩點,且開口向下,對稱軸在y軸左側(cè),則a的取值范圍是________.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:
已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點A和B(4,0),與y軸交于點C(0,8),其對稱軸為x=1.
(1)求此拋物線的解析式;
(2)過A、B、C三點作⊙O′與y軸的負(fù)半軸交于點D,求經(jīng)過原點O且與直線AD垂直(垂足為E)的直線OE的方程;
(3)設(shè)⊙O′與拋物線的另一個交點為P,直線OE與直線BC的交點為Q,直線x=m與拋物線的交點為R,直線x=m與直線OE的交點為S.是否存在整數(shù)m,使得以點P、Q、R、S為頂點的四邊形為平行四邊形?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:
已知拋物線y=ax
2+bx+c(a>0)的圖象經(jīng)過點B(12,0)和C(0,-6),對稱軸為x=2.
(1)求該拋物線的解析式;
(2)點D在線段AB上且AD=AC,若動點P從A出發(fā)沿線段AB以每秒1個單位長度的速度勻速運動,同時另一動點Q以某一速度從C出發(fā)沿線段CB勻速運動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運動速度;若不存在,請說明理由;
(3)在(2)的結(jié)論下,直線x=1上是否存在點M,使△MPQ為等腰三角形?若存在,請求出所有點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:
已知拋物線y=ax2+bx+c經(jīng)過A(-1,0),B(2,-3),C(3,0)三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,E是拋物線上的點,并且滿足△AEC的面積是△ADC面積的3倍,求點E的坐標(biāo);
(3)設(shè)點M是拋物線上,位于x軸的下方,且在對稱軸左側(cè)的一個動點,過M作x軸的平行線,交拋物線于另一點N,再作MQ⊥x軸于Q,NP⊥x軸于P.試求矩形MNPQ周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:
已知拋物線y=ax2+bx+c的頂點為(1,0),且經(jīng)過點(0,1).
(1)求該拋物線對應(yīng)的函數(shù)的解析式;
(2)將該拋物線向下平移m(m>0)個單位,設(shè)得到的拋物線的頂點為A,與x軸的兩個交點為B、C,若△ABC為等邊三角形.
①求m的值;
②設(shè)點A關(guān)于x軸的對稱點為點D,在拋物線上是否存在點P,使四邊形CBDP為菱形?若存在,寫出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:解答題
已知拋物線y=ax2+bx+c經(jīng)過A(-1,0),B(2,-3),C(3,0)三點.
(1)求拋物線的解析式;
(2)若拋物線的頂點為D,E是拋物線上的點,并且滿足△AEC的面積是△ADC面積的3倍,求點E的坐標(biāo);
(3)設(shè)點M是拋物線上,位于x軸的下方,且在對稱軸左側(cè)的一個動點,過M作x軸的平行線,交拋物線于另一點N,再作MQ⊥x軸于Q,NP⊥x軸于P.試求矩形MNPQ周長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:
題型:解答題
已知拋物線y=ax2+bx+c(a>0)的圖象經(jīng)過點B(14,0)和C(0,-8),對稱軸為x=4.
(1)求該拋物線的解析式;
(2)點D在線段AB上且AD=AC,若動點P從A出發(fā)沿線段AB以每秒1個單位長度的速度勻速運動,同時另一動點Q以某一速度從C出發(fā)沿線段CB勻速運動,問是否存在某一時刻,使線段PQ被直線CD垂直平分?若存在,請求出此時的時間t(秒)和點Q的運動速度;若不存在,請說明理由;
(3)在(2)的結(jié)論下,直線x=1上是否存在點M使△MPQ為等腰三角形?若存在,請求出所有點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>