函數(shù)f(x)=x2+x-lnx的極值點(diǎn)的個(gè)數(shù)是(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
B
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+x-lnx的極值點(diǎn)的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=x2+x-lnx的極值點(diǎn)的個(gè)數(shù)是( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省嘉興市高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

函數(shù)f(x)=x2+x-lnx的極值點(diǎn)的個(gè)數(shù)是( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-x,g(x)=lnx.
(1)求證:f(x)≥g(x);
(2)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的值;
(3)設(shè)F(x)=f(x)+mg(x)(m∈R)有兩個(gè)極值點(diǎn)x1、x2(x1<x2);求實(shí)數(shù)m的取值范圍,并證明:F(x2)>-
3+4ln216

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2-x,g(x)=lnx.
(1)求證:f(x)≥g(x);
(2)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的值;
(3)設(shè)F(x)=f(x)+mg(x)(m∈R)有兩個(gè)極值點(diǎn)x1、x2(x1<x2);求實(shí)數(shù)m的取值范圍,并證明:F(x2)>-
3+4ln2
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省重點(diǎn)中學(xué)聯(lián)誼學(xué)校高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=x2-x,g(x)=lnx.
(1)求證:f(x)≥g(x);
(2)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的值;
(3)設(shè)F(x)=f(x)+mg(x)(m∈R)有兩個(gè)極值點(diǎn)x1、x2(x1<x2);求實(shí)數(shù)m的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省廣州市增城中學(xué)高三(上)綜合測(cè)試數(shù)學(xué)試卷4(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=x2-x,g(x)=lnx.
(1)求證:f(x)≥g(x);
(2)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的值;
(3)設(shè)F(x)=f(x)+mg(x)(m∈R)有兩個(gè)極值點(diǎn)x1、x2(x1<x2);求實(shí)數(shù)m的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省杭州地區(qū)七校聯(lián)考高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=x2-x,g(x)=lnx.
(1)求證:f(x)≥g(x);
(2)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的值;
(3)設(shè)F(x)=f(x)+mg(x)(m∈R)有兩個(gè)極值點(diǎn)x1、x2(x1<x2);求實(shí)數(shù)m的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年北京市高考數(shù)學(xué)預(yù)測(cè)試卷(八)(解析版) 題型:解答題

已知函數(shù)f(x)=x2-x,g(x)=lnx.
(1)求證:f(x)≥g(x);
(2)若f(x)≥ag(x)恒成立,求實(shí)數(shù)a的值;
(3)設(shè)F(x)=f(x)+mg(x)(m∈R)有兩個(gè)極值點(diǎn)x1、x2(x1<x2);求實(shí)數(shù)m的取值范圍,并證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-ax,g(x)=lnx
(1)若f(x)≥g(x)對(duì)于定義域內(nèi)的x恒成立,求實(shí)數(shù)a的取值范圍;
(2)設(shè)h(x)=f(x)+g(x)有兩個(gè)極值點(diǎn)x1,x2且x1∈(0,
1
2
),求證:h(x1)-h(x2)>
3
4
-ln2;
(3)設(shè)r(x)=f(x)+g(
1+ax
2
),若對(duì)任意的a∈(1,2),總存在x0∈[
1
2
,1
],使不等式r(x0)>k(1-a2)成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>


同步練習(xí)冊(cè)答案