用換元法解方程
(x+2)2
x2
-
x+2
x
=6
時(shí),設(shè)
x+2
x
=y,原方程可化為( 。
A.y2+y-6=0B.y2+y+6=0C.y2-y-6=0D.y2-y+6=0
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解方程
(x+2)2
x2
-
x+2
x
=6
時(shí),設(shè)
x+2
x
=y,原方程可化為( 。
A、y2+y-6=0
B、y2+y+6=0
C、y2-y-6=0
D、y2-y+6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用換元法解方程
(x+2)2
x2
-
x+2
x
=6
時(shí),設(shè)
x+2
x
=y,原方程可化為( 。
A.y2+y-6=0B.y2+y+6=0C.y2-y-6=0D.y2-y+6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解方程
2
x2-2x
-x2+2x=1
時(shí),如設(shè)y=
1
x2-2x
,則將原方程化為關(guān)于y的整式方程是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解方程
2x2-2x
+2x-x2=1
時(shí),如設(shè)y=x2-2x,那么將原方程化為關(guān)于y的整式方程是
y2+y-2=0
y2+y-2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

用換元法解方程
1x2-2x
+2x2-4x=3
時(shí),如果設(shè)x2-2x=y,那么原方程可以化為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用換元法解方程
1
x2-2x
+2x2-4x=3
時(shí),如果設(shè)x2-2x=y,那么原方程可以化為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀題:
我們可以用換元法解簡(jiǎn)單的高次方程,入解方程x4-3x2+2=0可設(shè)y=x2,則原方程可化為y2-3y+2=0,解之得y1=2y2=1,當(dāng)y1=2時(shí),即x2=2則x1=
2
、x2=-
2
,當(dāng)y2=1時(shí),即x2=1,則x3=1、x4=-1,故原方程的解為x1=
2
、x2=-
2
;x3=1x4=-1,仿照上面完成下面解答:
(1)已知方程(2x2+1)2-2x2-3=0,設(shè)y=2x2+1,則原方程可化為
 

(2)仿照上述解法解方程(x2+2x)2-3x2-6x=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

閱讀題:
我們可以用換元法解簡(jiǎn)單的高次方程,入解方程x4-3x2+2=0可設(shè)y=x2,則原方程可化為y2-3y+2=0,解之得y1=2y2=1,當(dāng)y1=2時(shí),即x2=2則x1=數(shù)學(xué)公式、x2=-數(shù)學(xué)公式,當(dāng)y2=1時(shí),即x2=1,則x3=1、x4=-1,故原方程的解為x1=數(shù)學(xué)公式、x2=-數(shù)學(xué)公式;x3=1x4=-1,仿照上面完成下面解答:
(1)已知方程(2x2+1)2-2x2-3=0,設(shè)y=2x2+1,則原方程可化為______.
(2)仿照上述解法解方程(x2+2x)2-3x2-6x=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀題:
我們可以用換元法解簡(jiǎn)單的高次方程,入解方程x4-3x2+2=0可設(shè)y=x2,則原方程可化為y2-3y+2=0,解之得y1=2y2=1,當(dāng)y1=2時(shí),即x2=2則x1=
2
、x2=-
2
,當(dāng)y2=1時(shí),即x2=1,則x3=1、x4=-1,故原方程的解為x1=
2
、x2=-
2
;x3=1x4=-1,仿照上面完成下面
(1)已知方程(2x2+1)2-2x2-3=0,設(shè)y=2x2+1,則原方程可化為______.
(2)仿照上述解法解方程(x2+2x)2-3x2-6x=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:四川省期末題 題型:解答題

閱讀題:
我們可以用換元法解簡(jiǎn)單的高次方程,如解方程x4﹣3x2+2=0,
可設(shè)y=x2,則原方程可化為y2﹣3y+2=0,
解之得y1=2,y2=1,
當(dāng)y1=2時(shí),即x2=2,則x1=、x2=﹣,
當(dāng)y2=1時(shí),即x2=1,則x3=1、x4=﹣1,
故原方程的解為x1=、x2=﹣;x3=1、x4=﹣1。
仿照上面完成下面解答:
(1)已知方程(2x2+1)2﹣2x2﹣3=0,設(shè)y=2x2+1,則原方程可化為_________;
(2)仿照上述解法解方程(x2+2x)2﹣3x2﹣6x=0。

查看答案和解析>>


同步練習(xí)冊(cè)答案