當(dāng)x=-1時,代數(shù)式x2-x+k的值為0,則k的值是( 。
A.-2B.-1C.0D.2
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、當(dāng)x=-1時,代數(shù)式x2-x+k的值為0,則k的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)x=-1時,代數(shù)式x2-x+k的值為0,則k的值是( 。
A.-2B.-1C.0D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

當(dāng)x=-1時,代數(shù)式x2-x+k的值為0,則k的值是


  1. A.
    -2
  2. B.
    -1
  3. C.
    0
  4. D.
    2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:海南省期中題 題型:單選題

當(dāng)x=﹣1時,代數(shù)式x2﹣x+k的值為0,則k的值是
[     ]
A.﹣2
B.﹣1
C.0
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)x
=-3
=-3
時,
x2-9
x-3
的值為零;代數(shù)式
x+2
3x-1
有意義,則x的取值范圍是
x≥-2,且x≠
1
3
x≥-2,且x≠
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了探索代數(shù)式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的運用了“數(shù)形結(jié)合”思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則AC=
x2+1
CE=
(8-x)2+25
則問題即轉(zhuǎn)化成求AC+CE的最小值.
(1)我們知道當(dāng)A、C、E在同一直線上時,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此時x=
4
3
4
3
;
(2)請你根據(jù)上述的方法和結(jié)論,代數(shù)式
x2+4
+
(12-x)2+9
的最小值等于
13
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

為了探索代數(shù)式
x2+1
+
(8-x)2+25
的最小值,
小張巧妙的運用了數(shù)學(xué)思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連結(jié)AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則AC=
x2+1
,CE=
(8-x)2+25
 則問題即轉(zhuǎn)化成求AC+CE的最小值.
(1)我們知道當(dāng)A、C、E在同一直線上時,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此時x=
4
3
4
3
;
(2)題中“小張巧妙的運用了數(shù)學(xué)思想”是指哪種主要的數(shù)學(xué)思想?
(選填:函數(shù)思想,分類討論思想、類比思想、數(shù)形結(jié)合思想)
(3)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式
x2+4
+
(12-x)2+9
的最小值
13
13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了探索代數(shù)式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的運用了“數(shù)形結(jié)合”思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則AC=
x2+1
,CE=
(8-x)2+25
,則問題即轉(zhuǎn)化成求AC+CE的最小值.
(1)我們知道當(dāng)A、C、E在同一直線上時,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于______,此時x=______;
(2)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,直線l:y=數(shù)學(xué)公式x+b,經(jīng)過點M(0,數(shù)學(xué)公式),一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n為正整數(shù))依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),設(shè)x1=d(0<d<1).
(1)求b的值;
(2)求經(jīng)過點A1、B1、A2的拋物線的解析式(用含d的代數(shù)式表示);
(3)定義:若拋物線的頂點與x軸的兩個交點構(gòu)成的三角形是直角三角形,則這種拋物線就稱為:“美麗拋物線”.探究:當(dāng)d(0<d<1)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,請你求出相應(yīng)的d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:廣東省中考真題 題型:解答題

已知:如圖,直線l:經(jīng)過點,一組拋物線的頂點B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n為正整數(shù))依次是直線l上的點,這組拋物線與x軸正半軸的交點依次是:A1(x1,0),A2(x2,0),A3(x3,0),…,An+1(xn+1,0)(n為正整數(shù)),設(shè)x1=d(0<d<1)。
(1)求b的值;
(2)求經(jīng)過點A1、B1、A2的拋物線的解析式(用含d的代數(shù)式表示);
(3)定義:若拋物線的頂點與x軸的兩個交點構(gòu)成的三角形,則這種拋物線就稱為“美麗拋物線”。
探究:當(dāng)d(0<d<1)的大小變化時,這組拋物線中是否存在美麗拋物線?若存在,清你求出相應(yīng)的d 的值。

查看答案和解析>>


同步練習(xí)冊答案