定義集合A與B的“差集”為:A-B={x|x∈A且x?B},若集合M={1,2,3,4,5},N={2,3,6},則M-N為(  )
A.MB.NC.{1,4,5}D.{6}
C
請(qǐng)?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定義集合A與B的“差集”為:A-B={x|x∈A且x∉B},若集合M={1,2,3,4,5},N={2,3,6},則M-N為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義集合A與B的“差集”為:A-B={x|x∈A且x∉B},若集合M={1,2,3,4,5},N={2,3,6},則M-N為( 。
A.MB.NC.{1,4,5}D.{6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省深圳市高一(上)期中數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

定義集合A與B的“差集”為:A-B={x|x∈A且x∉B},若集合M={1,2,3,4,5},N={2,3,6},則M-N為( )
A.M
B.N
C.{1,4,5}
D.{6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

定義集合A與B的“差集”為:A-B={x|x∈A且x∉B},若集合M={1,2,3,4,5},N={2,3,6},則M-N為


  1. A.
    M
  2. B.
    N
  3. C.
    {1,4,5}
  4. D.
    {6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、文科數(shù)學(xué)(北京卷) 題型:044

已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i={1,2,…,n}(n≥2)對(duì)于A=(a1,a2,…an),B=(b1,b2,…bn)∈Sn,定義A與B的差為A-B=(|a1-b1|,|a2-b2||,…|an-bn|);A與B之間的距離為d(A,B)=|a1-b1|

(Ⅰ)當(dāng)n=5時(shí),設(shè)A=(0,1,0,0,1),B=(1,1,1,0,0),求A-B,d(A,B);

(Ⅱ)證明:A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B);

(Ⅲ)證明:A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三個(gè)數(shù)中至少有一個(gè)是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:導(dǎo)練必修一數(shù)學(xué)蘇教版 蘇教版 題型:044

(創(chuàng)新題)對(duì)稱差集:集合A與集合B的對(duì)稱差集定義為集合A與B中所有不屬于A∩B的元素的集合,記為AΔB,也就是說:

AΔB={x|x∈A∪B,xA∩B}.

即AΔB=(A∪B)-(A∩B),

也有AΔB=(A-B)∪(B-A).

很明顯,對(duì)稱差集運(yùn)算滿足交換律:

AΔB=BΔA.

思考:AΔ(BΔC)=(AΔB)ΔC成立嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M、P是兩個(gè)非空集合,定義MP的差集為:MP={x|xM,且xP},則M-(MP)等于                                                           (  )

A.P                            B.M

C.MP                         D.MP

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年高考數(shù)學(xué)第一輪復(fù)習(xí)、集合與簡(jiǎn)易邏輯 題型:013

設(shè)M、N是兩個(gè)非空集合,定義MN的差集為MN={x|xMxN},則M-(MN)等于

[  ]

A.N

B.M∩N

C.M∪N

D.M

答案:B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:013

設(shè)M、P是兩個(gè)非空集合,定義M與P的差集為:M-P={x|xÎ M,且xÏ P},則

[  ]

A.P

B.M

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

設(shè)M、P是兩個(gè)非空集合,定義MP的差集為:MP={x|xÎM,且xÏP},則(  )

[  ]

AP

BM

C

D

查看答案和解析>>


同步練習(xí)冊(cè)答案