已知A(2,3),其關(guān)于x軸的對稱點是B,B關(guān)于y軸對稱點是C,那么相當(dāng)于將A經(jīng)過( 。┑钠揭频搅薈.
A.向左平移4個單位,再向上平移6個單位
B.向左平移4個單位,再向下平移6個單位
C.向右平移4個單位,再向上平移6個單位
D.向下平移6個單位,再向右平移4個單位
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知y軸上有一點A,其坐標(biāo)為(2a+1,-a),則A關(guān)于x軸對稱的點B的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知如圖,過O且半徑為5的⊙P交x的正半軸于點M(2m,0)、交y軸的負(fù)半軸于點D,弧OBM與弧OAM關(guān)于x軸對稱,其中A、B、C是過點P且垂直于x軸的直線與兩弧及圓的交點.
(1)當(dāng)m=4時,
①填空:B的坐標(biāo)為
 
,C的坐標(biāo)為
 
,D的坐標(biāo)為
 
;
②若以B為頂點且過D的拋物線交⊙P于點E,求此拋物線的函數(shù)關(guān)系式和寫出點E的坐標(biāo);
③除D點外,直線AD與②中的拋物線有無其它公共點并說明理由.
(2)是否存在實數(shù)m,使得以B、C、D、E為頂點的四邊形組成菱形?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知A,B兩點的坐標(biāo)分別是(-2,3)和(2,3),則下面四個結(jié)論:①A,B關(guān)于x軸對稱;②A,B關(guān)于y軸對稱;③A,B關(guān)于原點對稱;④A,B之間的距離為4,其中正確的有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、已知A、B兩點的坐標(biāo)分別是(-2,3)和(2,3),則下面四個結(jié)論:①A、B關(guān)于x軸對稱;②A、B關(guān)于y軸對稱;③A、B關(guān)于原點對稱;④若A、B之間的距離為4,其中正確的有
2
個.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知⊙T與坐標(biāo)軸有四個不同的交點M、P、N、Q,其中P是直線y=kx-1與y軸的交點,精英家教網(wǎng)點Q與點P關(guān)于原點對稱.拋物線y=ax2+bx+c經(jīng)過點M、P、N,其頂點為H.
(1)求Q點的坐標(biāo);
(2)指出圓心T一定在哪一條直線上運(yùn)動;
(3)當(dāng)點H在直線y=kx-1上,且⊙T的半徑等于圓心T到原點距離的
2
倍時,你能確定k的值嗎?若能,請求出k的值;若不能,請你說明理由.(圖供分析參考用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=-x2+2mx+n(m,n為常數(shù),且m≠0,n>0)的精英家教網(wǎng)頂點為A,與y軸交于點C;拋物線C2與拋物線C1關(guān)于y軸對稱,其頂點為B,連接AC,BC,AB.
(1)請在橫線上直接寫出拋物線C2的解析式:
 
;
(2)當(dāng)m=1時,判定△ABC的形狀,并說明理由;
(3)拋物線C1上是否存在點P,使得四邊形ABCP為菱形?如果存在,請求出m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=-x2+2mx+1(m為常數(shù),且m≠0)的頂點為A,與y軸交于點C;拋物線C2與拋物線C1關(guān)于y軸對稱,其頂點為B.若點P是拋物線C1上的點,使得以A、B、C、P為頂點的四邊形為菱形,則m為( 。
A、±
3
B、
3
C、±
2
D、
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一次函數(shù)y1=2x,二次函數(shù)y2=mx2-3(m-1)x+2m-1的圖象關(guān)于y軸對稱,y2的頂點為A.
(1)求二次函數(shù)y2的解析式;
(2)將y2左右平移得到y(tǒng)3交y2于P點,過P點作直線l∥x軸交y3于點M,若△PAM為等腰三角形,求P點坐標(biāo);
(3)是否存在二次函數(shù)y4=ax2+bx+c,其圖象經(jīng)過點(-5,2),且對于任意一個實數(shù)x,這三個函數(shù)所對應(yīng)的函數(shù)值y1、y2、y4都有y1≤y4≤y2成立?若存在,求出函數(shù)y4的解析式;若不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線C1:y=-x2+2mx+1(m為常數(shù),且m≠0)的頂點為A,與y軸交于點C;拋物線C2與拋物線C1關(guān)于y軸對稱,其頂點為B.若點P是拋物線C1上的點,使得以A、B、C、P為頂點的四邊形為菱形,則m的值為
±
3
±
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在直角坐標(biāo)平面內(nèi)有雙曲線y=
6
3
x
,另有△ABC,其中點A、B、C的坐標(biāo)分別是A(-2
2
,
3
6
2
),B(-2
2
,0),C(0,
3
6
2
).
(1)如果將△ABC沿x軸翻折后得到對應(yīng)的△A1B1C1 (其中點A、B、C的對應(yīng)點分別是點A1、B1、C1),問:△A1B1C1的三個頂點中,有無在雙曲線y=
6
3
x
上的點?若有,寫出這個點的坐標(biāo).
(2)如果將△ABC沿x軸正方向平移a個單位后,使△ABC的一個頂點落在雙曲線y=
6
3
x
上,請直接寫出a的值.
(3)如果△ABC關(guān)于原點O的對稱的三角形△A2B2C2(其中點A、B、C的對應(yīng)點分別是點A2、B2、C2),請寫出經(jīng)過點A、A2的直線所表示的函數(shù)解析式.

查看答案和解析>>


同步練習(xí)冊答案