設(shè)方程ax2+bx+c=0的兩根為x1、x2且x1<x2,a<0,那么ax2+bx+c>0的解集是( 。
A.{x|x<x1}B.{x|x>x2}
C.{x|x<x1或x>x2}D.{x|x1<x<x2}
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)方程ax2+bx+c=0的兩根為x1、x2且x1<x2,a<0,那么ax2+bx+c>0的解集是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)方程ax2+bx+c=0的兩根為x1、x2且x1<x2,a<0,那么ax2+bx+c>0的解集是( 。
A.{x|x<x1}B.{x|x>x2}
C.{x|x<x1或x>x2}D.{x|x1<x<x2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

設(shè)方程ax2+bx+c=0的兩根為x1、x2且x1<x2,a<0,那么ax2+bx+c>0的解集是


  1. A.
    {x|x<x1}
  2. B.
    {x|x>x2}
  3. C.
    {x|x<x1或x>x2}
  4. D.
    {x|x1<x<x2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,
(1)若a>b>c且f(1)=0,證明:f(x)的圖象與x軸有兩個相異交點;
(2)若x1,x2,且x1<x2,f(x1)≠f(x2),證明:方程f(x)=
f(x 1)+f(x 2)2
必有一實根在區(qū)間 (x1,x2) 內(nèi);
(3)在(1)的條件下,設(shè)兩交點為A、B,求線段AB長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c,
(1)若a>b>c且f(1)=0,證明:f(x)的圖象與x軸有兩個相異交點;
(2)若x1,x2,且x1<x2,f(x1)≠f(x2),證明:方程數(shù)學(xué)公式必有一實根在區(qū)間 (x1,x2) 內(nèi);
(3)在(1)的條件下,設(shè)兩交點為A、B,求線段AB長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:紹興一模 題型:單選題

設(shè)
a
、
b
、
c
是三個非零向量,且
a
b
不共線,若關(guān)于x的方程
a
x2+
b
x+
c
=
0
的兩個根為x1,x2,則( 。
A.x1>x2B.x1=x2
C.x1<x2D.x1,x2大小無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•紹興一模)設(shè)
a
、
b
、
c
是三個非零向量,且
a
、
b
不共線,若關(guān)于x的方程
a
x2+
b
x+
c
=
0
的兩個根為x1,x2,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2004全國各省市高考模擬試題匯編(天利38套)·數(shù)學(xué) 題型:044

二次函數(shù)f(x)=ax2+bx+c(a、b、c∈R,a≠0).

(Ⅰ)對于x1、x2∈R,且x1<x2,f(x1)≠f(x2),求證:方程f(x)=[f(x1)+f(x2)]有不相等的兩實根,且必有一根屬于(x1、x2);

(Ⅱ)若方程f(x)=[f(x1)+f(x2)]在(x1、x2)內(nèi)的實根為m,且x1、m-、x2成等差數(shù)列,設(shè)x=x0是f(x)的對稱軸方程.

求證:x0<m2;

(Ⅲ)若a>0,f(0)=1,方程f(x)=x的兩實根為α、β,當(dāng)|β|<2,

|α-β|=2時,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成功之路·突破重點線·數(shù)學(xué)(學(xué)生用書) 題型:044

二次函數(shù)f(x)=ax2+bx+c(a、b、c∈R,a≠0).

(Ⅰ)對于x1、x2∈R,且x1<x2,f(x1)≠f(x2),求證:方程f(x)=[f(x1)+f(x2)]有不相等的兩實根,且必有一根屬于(x1、x2);

(Ⅱ)若方程f(x)=[f(x1)+f(x2)]在(x1、x2)內(nèi)的實根為m,且x1、m-、x2成等差數(shù)列,設(shè)x=x0是f(x)的對稱軸方程.求證:x0<m2

(Ⅲ)若a>0,f(0)=1,方程f(x)=x的兩實根為α、β,當(dāng)|β|<2,|α-β|=2時,求b的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案