函數(shù)f(x)=
2
x-1
(2≤x≤6)
的最大值是(  )
A.1B.2C.
1
5
D.
2
5
B
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2
x-1
(2≤x≤6)
的最大值是(  )
A、1
B、2
C、
1
5
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=
2
x-1
(2≤x≤6)
的最大值是( 。
A.1B.2C.
1
5
D.
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2
x-1
(x∈[2,6])的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
2
x
+6
,其中a為實(shí)常數(shù).
(1)若f(x)>3x在(1,+∞)上恒成立,求a的取值范圍;
(2)已知a=
3
4
,P1,P2是函數(shù)f(x)圖象上兩點(diǎn),若在點(diǎn)P1,P2處的兩條切線相互平行,求這兩條切線間距離的最大值;
(3)設(shè)定義在區(qū)間D上的函數(shù)y=s(x)在點(diǎn)P(x0,y0)處的切線方程為l:y=t(x),當(dāng)x≠x0時(shí),若
s(x)-t(x)
x-x0
>0
在D上恒成立,則稱點(diǎn)P為函數(shù)y=s(x)的“好點(diǎn)”.試問函數(shù)g(x)=x2f(x)是否存在“好點(diǎn)”.若存在,請求出所有“好點(diǎn)”坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
)-1(x∈R)
則f(x)在區(qū)間[0,
π
2
]上的最大值與最小值分別是( 。
A、1,-2B、2,-1
C、1,-1D、2,-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

探究函數(shù)f(x)=2x+
8
x
,x∈(0,+∞)
的最小值,并確定取得最小值時(shí)x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 16 10 8.34 8.1 8.01 8 8.01 8.04 8.08 8.6 10 11.6 15.14
請觀察表中y值隨x值變化的特點(diǎn),完成以下的問題.
(1)函數(shù)f(x)=2x+
8
x
(x>0)
在區(qū)間(0,2)上遞減;函數(shù)f(x)=2x+
8
x
(x>0)
在區(qū)間______上遞增.當(dāng)x=______時(shí),y最小=______.
(2)證明:函數(shù)f(x)=2x+
8
x
(x>0)
在區(qū)間(0,2)遞減.
(3)思考:函數(shù)f(x)=2x+
8
x
(x<0)
時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x•tanθ-1,x∈[-1,
3
],θ∈(-
π
2
,
π
2
)

(1)當(dāng)θ=-
π
6
時(shí),求函數(shù)f(x)的最大值與最小值;
(2)求θ的取值范圍,使y=f(x)在區(qū)間[-1,
3
]
上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+
2x
(x≠0)

(1)證明:f(x)在(0,+∞)上是減函數(shù);
(2)當(dāng)x∈[2,6]時(shí),求f(x)的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海 題型:解答題

已知函數(shù)f(x)=x2+2x•tanθ-1,x∈[-1,
3
],θ∈(-
π
2
π
2
)

(1)當(dāng)θ=-
π
6
時(shí),求函數(shù)f(x)的最大值與最小值;
(2)求θ的取值范圍,使y=f(x)在區(qū)間[-1,
3
]
上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+2x-6
,
(1)當(dāng)f(x)=2時(shí),求x的值;
(2)證明函數(shù)f(x)在[2,4]上是減函數(shù),并求函數(shù)的最大值和最小值.

查看答案和解析>>


同步練習(xí)冊答案