定義在R上的偶函數(shù)f (x)滿足f (2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列結論正確的是( 。
A.f (sinα)>f (cosβ)B.f (sinα)<f (cosβ)
C.f (cosα)<f(cosβ)D.f (cosα)>f (cosβ)
相關習題

科目:高中數(shù)學 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,且α<β,則下列不等式關系中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省南昌十六中高一(上)12月月考數(shù)學試卷(解析版) 題型:選擇題

定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列結論正確的是( )
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(cosα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年河南省中原名校高三(上)期中數(shù)學試卷(理科)(解析版) 題型:選擇題

定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列結論正確的是( )
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(cosα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省嘉興一中高一(下)3月月考數(shù)學試卷(解析版) 題型:選擇題

定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列結論正確的是( )
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(cosα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省南昌二中高三(上)第四次月考數(shù)學試卷(文科)(解析版) 題型:選擇題

定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列結論正確的是( )
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(cosα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省蚌埠市懷遠一中高三(上)第六次月考數(shù)學試卷(文科)(解析版) 題型:選擇題

定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列結論正確的是( )
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(cosα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年高三(上)10月質(zhì)檢數(shù)學試卷(文科)(解析版) 題型:選擇題

定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列結論正確的是( )
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(cosα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年浙江省杭州市蕭山七中高三(上)10月質(zhì)量檢測數(shù)學試卷(文科)(解析版) 題型:選擇題

定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列結論正確的是( )
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(cosα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年山東省淄博市臨淄中學高三(上)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列結論正確的是( )
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(cosα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河南省許昌市三校高三(上)期末數(shù)學試卷(理科)(解析版) 題型:選擇題

定義在R上的偶函數(shù)f(x)滿足f(2-x)=f(x),且在[-3,-2]上是減函數(shù),α,β是鈍角三角形的兩個銳角,則下列結論正確的是( )
A.f(sinα)>f(cosβ)
B.f(cosα)<f(cosβ)
C.f(cosα)>f(cosβ)
D.f(sinα)<f(cosβ)

查看答案和解析>>


同步練習冊答案