如圖,AE⊥AB且AE=AB,BC⊥CD且BC=CD,那么,按照?qǐng)D中所標(biāo)注的數(shù)據(jù),圖中實(shí)線(xiàn)所圍成的圖形面積為
40.5
40.5
分析:由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以證明△EFA≌△ABG,所以AF=BG,AG=EF;同理證得△BGC≌△DHC,GC=DH,CH=BG,故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面積的割補(bǔ)法和面積公式即可求出圖形的面積.
解答:解:因?yàn)锳E⊥AB且AE=AB,EF⊥FH,BG⊥FH?∠FED=∠EFA=∠BGA=90°,
∠EAF+∠BAG=90°,∠ABG+∠BAG=90°?∠EAF=∠ABG,
所以AE=AB,∠EFA=∠AGB,∠EAF=∠ABG?△EFA≌△ABG,
所以AF=BG,AG=EF.
同理證得△BGC≌△DHC得GC=DH,CH=BG.
故FH=FA+AG+GC+CH=2+6+3+2=13,
故S=
1
2
(6+3)×13-2×3-6×2=40.5.
故答案為:40.5.
點(diǎn)評(píng):本題考查的是全等三角形的判定的相關(guān)知識(shí).作輔助線(xiàn)是本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方形ABCD被分成兩個(gè)長(zhǎng)方形,且AB:AE=4:1,圖中陰影部分三角形的面積為2平方分米.則長(zhǎng)方形ABCD的面積為( 。

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

在平面內(nèi),旋轉(zhuǎn)變換試指某一個(gè)圖形繞一個(gè)定點(diǎn)按順時(shí)針或逆時(shí)針旋轉(zhuǎn)一定的角度而得到新位置圖形的一種變換.

活動(dòng)一:如圖①,在Rt△ABC中,D為斜邊AB上的一點(diǎn),AD=2,BD=1,且四邊形DECF是正方形,在求陰影部分面積時(shí),小明運(yùn)用圖形旋轉(zhuǎn)的方法,將△DBF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DGE(如圖②所示),小明一眼就看到答案,請(qǐng)你寫(xiě)出陰影部分的面積
1
1

活動(dòng)二:如圖③,在四邊形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,過(guò)點(diǎn)A作AE⊥BC,垂足為點(diǎn)E,小明仍運(yùn)用圖形旋轉(zhuǎn)的方法,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到△ADG(如圖④所示),則:
(1)四邊形AECG是怎樣的特殊四邊形?答:
正方形
正方形

(2)AE的長(zhǎng)是
4
4

活動(dòng)三:如圖⑤,在四邊形ABCD中,AB⊥AD,CD⊥AD,將BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BE,連接AE.若AB=2,DC=4,求△ABE的面積.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,長(zhǎng)方形ABCD被分成兩個(gè)長(zhǎng)方形,且AB:AE=4:1,圖中陰影部分三角形的面積為2平方分米.則長(zhǎng)方形ABCD的面積為


  1. A.
    1平方分米
  2. B.
    3平方分米
  3. C.
    數(shù)學(xué)公式平方分米
  4. D.
    數(shù)學(xué)公式平方分米

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:解答題

在平面內(nèi),旋轉(zhuǎn)變換試指某一個(gè)圖形繞一個(gè)定點(diǎn)按順時(shí)針或逆時(shí)針旋轉(zhuǎn)一定的角度而得到新位置圖形的一種變換.

活動(dòng)一:如圖①,在Rt△ABC中,D為斜邊AB上的一點(diǎn),AD=2,BD=1,且四邊形DECF是正方形,在求陰影部分面積時(shí),小明運(yùn)用圖形旋轉(zhuǎn)的方法,將△DBF繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,得到△DGE(如圖②所示),小明一眼就看到答案,請(qǐng)你寫(xiě)出陰影部分的面積______.
活動(dòng)二:如圖③,在四邊形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,過(guò)點(diǎn)A作AE⊥BC,垂足為點(diǎn)E,小明仍運(yùn)用圖形旋轉(zhuǎn)的方法,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到△ADG(如圖④所示),則:
(1)四邊形AECG是怎樣的特殊四邊形?答:______;
(2)AE的長(zhǎng)是______.
活動(dòng)三:如圖⑤,在四邊形ABCD中,AB⊥AD,CD⊥AD,將BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BE,連接AE.若AB=2,DC=4,求△ABE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案