【題目】已知函數(shù)
(Ⅰ)若直線且曲線在A處的切線與在B處的切線相互平行,求a的取值范圍;
(Ⅱ)設(shè)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)且若不等式恒成立,求的取值范圍.
【答案】(Ⅰ)(Ⅱ).
【解析】試題分析:(Ⅰ)求出可得在有解,轉(zhuǎn)化為函數(shù)與的圖象在上有交點(diǎn),求出相切時(shí),利用數(shù)形結(jié)合思想可得結(jié)果;(Ⅱ)根據(jù)極值點(diǎn)的定義可得,作差可得, 等價(jià)于 令,則,不等式在上恒成立,討論兩種情況,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性可得函數(shù)最值,從而篩選符合題意的的取值范圍.
試題解析:(Ⅰ)依題意,函數(shù)的定義域?yàn)椋?/span>0, ),因?yàn)榍在A處的切線與在B處的切線相互平行,所以有解,即方程有解.
方程有解轉(zhuǎn)化為函數(shù)的圖像在上有交點(diǎn),
如圖,令過原點(diǎn)且與函數(shù)的圖像相切的直線的斜率為,只須
令切點(diǎn)為,所以
,所以
(Ⅱ)
因?yàn)?/span>在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn),所以的兩個(gè)根,即
因?yàn)?/span>
令,則,由題意知,不等式上恒成立.
令
如果所以上單調(diào)遞增,又
上恒成立,符合題意.
如果時(shí), 上單調(diào)遞增,在上單調(diào)遞減,又上不能恒小于0,不符合題意,舍去.
綜上所述,若不等式恒成立,只須.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】根據(jù)運(yùn)算定律在□里填上適當(dāng)?shù)臄?shù)字或字母。
40×a=□×40
b×62=□×b
a×35×□=□×(35×24)
5×25×□=□×(25×8)
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來源: 題型:
【題目】文字題.
(1)3.6乘它與2.6的差,除以最小的質(zhì)數(shù),商是多少?
(2)被除數(shù)、除數(shù)、商與余數(shù)的和是235,已知商是27,余數(shù)是6,求除數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com