【題目】用配方法將關(guān)于的方程可以變形為,那么用配方法也可以將關(guān)于的方程變形為下列形式(

A. B. C. D.

【答案】B

【解析】

把關(guān)于x的方程x2+5x+n=0常數(shù)項n移項后,應(yīng)該在左右兩邊同時加上一次項系數(shù)5的一半的平方可以求得n、p的值,然后用同樣的方法對關(guān)于x的方程x2-5x+n=-1進行變形.

把方程x2+5x+n=0的常數(shù)項移到等號的右邊,得到x2+5x=n,

方程兩邊同時加上一次項系數(shù)一半的平方,得到x2+5x+()2=n+()2,

配方得(x+)2=n+()2,

所以,根據(jù)題意,得

p=,n+()2=9,n=.

所以,由方程x25x+n=1得到

x25x=1

把常數(shù)項移到等號的右邊,得到x25x=1+

方程兩邊同時加上一次項系數(shù)一半的平方,得到x25x+()2=1++()2

配方得(x)2=8.(xp)2=8

故答案選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCADE均為等腰直角三角形,∠BAC=∠DAE90°,FEC的中點,連接AF.寫出AFBD的數(shù)量關(guān)系和位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動課上,老師提出這樣一個問題:已知,同學(xué)們只用一塊三角板可以畫出它的角平分線嗎?聰明的小陽經(jīng)過思考設(shè)計了如下方案(如圖):

1)在角的兩邊OMON上分別取OA=OB;

2)過點ADAOM于點A,交ON于點D;過點BEBON于點B,交OM于點E,AD、BE交于點C;

3)作射線OC.

小陽接著解釋說:此時,OAC≌△OBC,所以射線OC為∠MON的平分線。小陽的方案中,OAC≌△OBC的依據(jù)是(

A.SASB.ASAC.HLD.AAS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠A90°,∠ACB30°,AC10,CD是角平分線.

1)如圖1,若EAC邊上的一個定點,在CD上找一點P,使PA+PE的值最。

2)如圖2,若EAC邊上的一個動點,在CD上找一點P,使PA+PE的值最小,并直接寫出其最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC=90°,AB=3,M為邊BC上的點,連接AM.如果將△ABM沿直線AM翻折后,點B恰好落在邊AC的中點處,那么點MAC的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,

1)若AE平分∠BAC,ADBC于點D,∠C=74°,∠B=46°,求∠DAE的度數(shù).

2)若AEABC的中線,BC=4,ABE的面積為4,EC=3DE,求ABC面積和ADE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用同樣規(guī)格的規(guī)格黑白兩色正方形瓷磚鋪設(shè)矩形地面,請觀察圖形并解答有關(guān)問題.

在第個圖中,每一橫行共有________塊瓷磚,每豎行共有________塊瓷磚(均用含的代數(shù)式表示)

設(shè)鋪設(shè)地面所用的瓷磚總塊數(shù),寫出的函數(shù)關(guān)系式(不寫的取值范圍)

按上述鋪設(shè)方案,鋪一塊這樣的地面共用了塊瓷磚,求此時的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形中,=4, =8,點邊上一點,且,點是邊上一動點,連接,,則下列結(jié)論:① ;②當(dāng)時,平分 ; 周長的最小值為15 ;④當(dāng)時,平分.其中正確的個數(shù)有(

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4個小長方形,然后按圖2的形狀拼成一個正方形.

(1)2中陰影部分的面積請用兩種方法表示: ②_________.

(2)觀察圖2,請你寫出式子(mn)2(mn)2,mn之間的等量關(guān)系:

(3)xy=-6,xy2.75,求xy的值.

(4)觀察圖3,你能得到怎樣的代數(shù)恒等式?

查看答案和解析>>

同步練習(xí)冊答案