【題目】在數(shù)學(xué)活動(dòng)課上,老師提出這樣一個(gè)問(wèn)題:“已知,同學(xué)們只用一塊三角板可以畫出它的角平分線嗎?”聰明的小陽(yáng)經(jīng)過(guò)思考設(shè)計(jì)了如下方案(如圖):
(1)在角的兩邊OM、ON上分別取OA=OB;
(2)過(guò)點(diǎn)A作DA⊥OM于點(diǎn)A,交ON于點(diǎn)D;過(guò)點(diǎn)B作EB⊥ON于點(diǎn)B,交OM于點(diǎn)E,AD、BE交于點(diǎn)C;
(3)作射線OC.
小陽(yáng)接著解釋說(shuō):“此時(shí),△OAC≌△OBC,所以射線OC為∠MON的平分線。”小陽(yáng)的方案中,△OAC≌△OBC的依據(jù)是( )
A.SASB.ASAC.HLD.AAS
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙上的兩條對(duì)稱軸、相交于中心點(diǎn),將格點(diǎn)(頂點(diǎn)在小正方形的頂點(diǎn)上)分別作下列三種變換:
①先以點(diǎn)為中心順時(shí)針旋轉(zhuǎn),再向右平移格,最后向上平移格;
②先以點(diǎn)為中心作中心對(duì)稱圖形,再以點(diǎn)的對(duì)應(yīng)點(diǎn)為中心逆時(shí)針旋轉(zhuǎn);
③先以直線為軸作軸對(duì)稱圖形,再向上平移格,最后以點(diǎn)的對(duì)應(yīng)點(diǎn)為中心順時(shí)針旋轉(zhuǎn).
其中,能將變換成的種數(shù)是( )
A. 0種 B. 1種 C. 2種 D. 3種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中,D是△ABC內(nèi)一點(diǎn),且DA=DB,E為△ABC外一點(diǎn),連接BE交AC于F,BE=BC,BD平分∠EBC,連接DE,CE,AD∥CE.
(1)求證:∠DAC=∠DBE;
(2)若AB=6,求△BEC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB、AC的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5。當(dāng)△ABC是等腰三角形時(shí),求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知與是兩個(gè)大小不同的等腰直角三角形.
如圖①所示,連接,,試判斷線段和的數(shù)量和位置關(guān)系,并說(shuō)明理由;
如圖②所示,連接,將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)到,連接,試判斷線段和的數(shù)量和位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年8月.山西龍城將迎來(lái)全國(guó)第二屆青年運(yùn)動(dòng)會(huì),盛會(huì)將至,整個(gè)城市已經(jīng)進(jìn)入了全力準(zhǔn)備的狀態(tài).太職學(xué)院足球場(chǎng)作為一個(gè)重要比賽場(chǎng)館.占地面積約24300平方米.總建筑面積4790平方米,設(shè)有2476個(gè)座位,整體建筑簡(jiǎn)潔大方,獨(dú)具特色.2018年3月15日該場(chǎng)館如期開工,某施工隊(duì)負(fù)責(zé)安裝該場(chǎng)館所有座位,在安裝完476個(gè)座位后,采用新技術(shù),效率比原來(lái)提升了.結(jié)來(lái)比原計(jì)劃提前4天完成安裝任務(wù).求原計(jì)劃每天安裝多少個(gè)座位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:幾個(gè)全等的正多邊形依次有一邊重合,排成一圈,中間可以圍成一個(gè)正多邊形,我們稱作正多邊形的環(huán)狀連接。如圖,我們可以看作正六邊形的環(huán)狀連接,中間圍成一個(gè)邊長(zhǎng)相等的正六邊形;若正八邊形作環(huán)狀連接,中間可以圍的正多邊形的邊數(shù)為;
若正八邊形作環(huán)狀連接,中間可以圍的正多邊形的邊數(shù)為________,若邊長(zhǎng)為1的正n邊形作環(huán)狀連接,中間圍成的是等邊三角形,則這個(gè)環(huán)狀連接的外輪廓長(zhǎng)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用配方法將關(guān)于的方程可以變形為,那么用配方法也可以將關(guān)于的方程變形為下列形式( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣4,0),B(2,0),與y軸交于點(diǎn)C.請(qǐng)解答下列問(wèn)題:
(1)求拋物線的函數(shù)解析式并直接寫出頂點(diǎn)M坐標(biāo);
(2)連接AM,N是AM的中點(diǎn),連接BN,求線段BN長(zhǎng).
注:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(﹣,).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com