【題目】在邊長(zhǎng)為2的正方形ABCD中,點(diǎn)EAD邊上的中點(diǎn),BF平分∠EBCCD于點(diǎn)F,過(guò)點(diǎn)FFGABBE于點(diǎn)H,則GH的長(zhǎng)為(

A.B.C.D.

【答案】A

【解析】

ABEB點(diǎn)旋轉(zhuǎn),使ABBC重合,設(shè)BCK是旋轉(zhuǎn)后的ABE,證明BEAE+CF,由勾股定理得BE,則CFBEAE1,易證四邊形BCFG與四邊形ADFG都是矩形,得出CFBG1GHAE,則BGH∽△BAE,得出,即可得出結(jié)果.

解:∵四邊形ABCD是正方形,

ABBC,∠BAE=∠BCD90°

ABEB點(diǎn)旋轉(zhuǎn),使ABBC重合,如圖所示:

設(shè)BCK是旋轉(zhuǎn)后的ABE

∴△ABE≌△CBK,

AECKBEBK,∠ABE=∠CBK,∠BAE=∠BCK90°,

K、C、F三點(diǎn)共線,

BF是∠EBC的角平分線,

∴∠EBF=∠FBC,

∴∠ABE+EBF=∠KBC+FBC,

∴∠ABF=∠FBK

∵四邊形ABCD是正方形,

ABAD2,ABCD

∴∠ABF=∠BFK,

∴∠KBF=∠BFK,

BKKF

KFCK+CFAE+CF,BKBE,

BEAE+CF

∵點(diǎn)EAD邊上的中點(diǎn),

AEAD1,

由勾股定理得:BE,

CFBEAE1,

∵四邊形ABCD是正方形,FGAB,

∴四邊形BCFG與四邊形ADFG都是矩形,

CFBG1,GHAE

∴△BGH∽△BAE,

,即,

GH,

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一副籃架由配重、支架、籃板與籃筐組成,在立柱的C點(diǎn)觀察籃板上沿D點(diǎn)的仰角為45°,在支架底端的A點(diǎn)觀察籃板上沿D點(diǎn)的仰角為54°,點(diǎn)C與籃板下沿點(diǎn)E在同一水平線,若AB=1.91米,籃板高度DE1.05米,求籃板下沿E點(diǎn)與地面的距離.(結(jié)果精確到01m,參考數(shù)據(jù):sin54°≈0.80, cos54°≈0.60,tan54°1.33

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)《圓》這一單元時(shí),我們學(xué)習(xí)了圓周角定理的推論:圓內(nèi)接四邊形的對(duì)角互補(bǔ);事實(shí)上,它的逆命題:對(duì)角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)共圓,也是一個(gè)真命題.在圖形旋轉(zhuǎn)的綜合題中經(jīng)常會(huì)出現(xiàn)對(duì)角互補(bǔ)的四邊形,那么,我們就可以借助“對(duì)角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)共圓”,然后借助圓的相關(guān)知識(shí)來(lái)解決問(wèn)題,例如:

已知:是等邊三角形,點(diǎn)內(nèi)一點(diǎn),連接,將線段逆時(shí)針旋轉(zhuǎn)得到線段,連接,,并延長(zhǎng)于點(diǎn).當(dāng)點(diǎn)在如圖所示的位置時(shí):

1)觀察填空:

①與全等的三角形是________;

的度數(shù)為       

2)利用題干中的結(jié)論,證明:,四點(diǎn)共圓;

3)直接寫(xiě)出線段,,之間的數(shù)量關(guān)系.____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)生產(chǎn)的一種果汁飲料由A、B兩種水果配制而成,其比例與成本如下方表格所示,已知該飲料的成本價(jià)為8/千克,按現(xiàn)價(jià)售出后可獲利潤(rùn)50%,每個(gè)月可出售27500瓶.

1)求m的值;

2)由于物價(jià)上漲,A水果成本提高了25%B水果成本提高了20%,在不改變售價(jià)的情況下,若要保持每個(gè)月的利潤(rùn)不減少,則現(xiàn)在至少需要售出多少瓶飲料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化。某校開(kāi)展雙剛進(jìn)課常的活動(dòng)。該校隨機(jī)抽取部分學(xué)生,按四個(gè)類別:表示很喜歡" 表示喜歡”,表示"一般”,表示"不喜歡”.調(diào)查他們對(duì)漢劇的喜愛(ài)情況將結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息,解決下列問(wèn)題:

扇形統(tǒng)計(jì)圖中.類所對(duì)應(yīng)的扇形圓心角的大小為 ;

請(qǐng)通過(guò)計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖:

該校共有名學(xué)生.估計(jì)該校表示很喜歡類的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】化簡(jiǎn):++…+

為了能找到復(fù)雜計(jì)算問(wèn)題的結(jié)果,我們往往會(huì)通過(guò)將該問(wèn)題分解,試圖找尋算式中每個(gè)式子是否存在某種共同規(guī)律,然后借助這個(gè)規(guī)律將問(wèn)題轉(zhuǎn)化為可以解決的簡(jiǎn)單問(wèn)題.下面我們嘗試著用這個(gè)思路來(lái)解決上面的問(wèn)題.請(qǐng)你按照這個(gè)思路繼續(xù)進(jìn)行下去,并把相應(yīng)橫線上的空格補(bǔ)充完整.

(分析問(wèn)題)第1個(gè)加數(shù):;

2個(gè)加數(shù):;

3個(gè)加數(shù):;

4個(gè)加數(shù):   ;

(總結(jié)規(guī)律)第n個(gè)加數(shù):         

(解決問(wèn)題)請(qǐng)你利用上面找到的規(guī)律,繼續(xù)化簡(jiǎn)下面的問(wèn)題.(結(jié)果只需化簡(jiǎn),無(wú)需求出最后得數(shù))++…+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知反比例函數(shù)C1y=﹣x0)的圖象如圖所示,將該曲線繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)45°得到曲線C2,點(diǎn)N是曲線C2上的一點(diǎn),點(diǎn)M在直線y=﹣x上,連接MN,ON,若MNON,則△MON的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】揚(yáng)州包子是淮揚(yáng)菜系的維揚(yáng)點(diǎn)心代表,里面的餡品種豐富.早飯準(zhǔn)備了四個(gè)包子,一個(gè)蟹黃包、一個(gè)松籽包、兩個(gè)三鮮包,四個(gè)包子除餡外其他都相同.

1)請(qǐng)預(yù)測(cè)“吃一個(gè)包子恰好是松籽包”的概率是_______;

2)請(qǐng)用畫(huà)樹(shù)狀圖或用表格的方法預(yù)測(cè)“吃兩個(gè)包子恰好是三鮮包”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某校教學(xué)樓AB后方有一斜坡,斜坡與教學(xué)樓剖面在同一平面內(nèi),已知斜坡CD的長(zhǎng)為6m,坡度i=1:0.75,教學(xué)樓底部到斜坡底部的水平距離AC=8m,在教學(xué)樓頂部B點(diǎn)測(cè)得斜坡頂部D點(diǎn)的俯角為46°,則教學(xué)樓的高度約為(

(參考數(shù)據(jù):sin46°≈0.72,cos46°≈0.69,tan46°≈1.04).

A.121mB.133m

C.169mD.181m

查看答案和解析>>

同步練習(xí)冊(cè)答案