綜合與探究
如圖1,在平面直角坐標(biāo)系xOy中,拋物線W的函數(shù)表達(dá)式為y=﹣x2+x+4.拋物線W與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A的右側(cè),與y軸交于點(diǎn)C,它的對稱軸與x軸交于點(diǎn)D,直線l經(jīng)過C、D兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo)及直線l的函數(shù)表達(dá)式.
(2)將拋物線W沿x軸向右平移得到拋物線W′,設(shè)拋物線W′的對稱軸與直線l交于點(diǎn)F,當(dāng)△ACF為直角三角形時(shí),求點(diǎn)F的坐標(biāo),并直接寫出此時(shí)拋物線W′的函數(shù)表達(dá)式.
(3)如圖2,連接AC,CB,將△ACD沿x軸向右平移m個(gè)單位(0<m≤5),得到△A′C′D′.設(shè)A′C交直線l于點(diǎn)M,C′D′交CB于點(diǎn)N,連接CC′,MN.求四邊形CMNC′的面積(用含m的代數(shù)式表示).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
在▱ABCD中,AB=10,BC=14,E,F(xiàn)分別為邊BC,AD上的點(diǎn),若四邊形AECF為正方形,則AE的長為( 。
| A. | 7 | B. | 4或10 | C. | 5或9 | D. | 6或8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
揚(yáng)州建城2500年之際,為了繼續(xù)美化城市,計(jì)劃在路旁栽樹1200
棵,由于志愿者的參加,實(shí)際每天栽樹的棵樹比原計(jì)劃多20%,結(jié)果提前2天完成,
求原計(jì)劃每天栽樹多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,四邊形ABCD內(nèi)接于⊙O,AB為⊙O的直徑,點(diǎn)C為的中點(diǎn).若∠A=40°,則∠B= 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=3x+2的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為1.過點(diǎn)A作AC⊥y軸交反比例函數(shù)y=(k≠0)的圖象于點(diǎn)C,連接BC.
(1)求反比例函數(shù)的表達(dá)式.
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
一個(gè)多邊形的內(nèi)角和是外角和的2倍,這個(gè)多邊形的邊數(shù)為( )
| A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列命題正確的是( 。
| A. | 矩形的對角線互相垂直 |
| B. | 兩邊和一角對應(yīng)相等的兩個(gè)三角形全等 |
| C. | 分式方程+1=可化為一元一次力程x﹣2+(2x﹣1)=﹣1.5 |
| D. | 多項(xiàng)式t2﹣16+3t因式分解為(t+4)(t﹣4)+3t |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com