考點(diǎn):分式的化簡(jiǎn)求值
專題:
分析:根據(jù)
-
=2求出a-b=-2ab,再將原式化為
,化簡(jiǎn)后整體代入,約分即可.
解答:解:∵
-
=2,
∴
=2,
∴b-a=2ab,
∴a-b=-2ab,
∴原式=
=
=
=
.
故答案為
.
點(diǎn)評(píng):本題考查了分式的化簡(jiǎn)求值,熟悉通分和約分以及能利用整體思想是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來(lái)源:
題型:
求y=2x關(guān)于直線x=-1對(duì)稱的直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
探究:如圖①,△ABC是等邊三角形,以點(diǎn)B為頂點(diǎn)作∠PBQ=60°,BQ交邊AC于點(diǎn)D,過(guò)點(diǎn)A作AE∥BC,AE交BP于點(diǎn)E.
求證:AD+AE=AB;
應(yīng)用:在圖①的基礎(chǔ)上,將∠PBQ繞著點(diǎn)B順時(shí)針旋轉(zhuǎn),如圖②,使BQ交AC的延長(zhǎng)線于點(diǎn)D,BP交邊AC于點(diǎn)G.若AB=8,AE=2,則GD的長(zhǎng)為
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
如圖,在△ABC中,點(diǎn)O在AB邊上,過(guò)點(diǎn)O作BC的平行線交∠ABC的平分線于點(diǎn)D,過(guò)點(diǎn)B作BE⊥BD交直線OD于點(diǎn)E.
(1)求證:OE=OD;
(2)當(dāng)點(diǎn)O在AB的什么位置時(shí),四邊形BDAE是矩形?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
已知a-2b=1,那么4-a
2+4ab-4b
2=
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
如圖,邊長(zhǎng)為n的正方形OABC的邊OA,OC在坐標(biāo)軸上,點(diǎn)A
1,A
2,…,A
n-1為OA的n等分點(diǎn),點(diǎn)B
1,B
2,…,B
n-1為CB的n等分點(diǎn),連結(jié)A
1B
1,A
2B
2,…,A
n-1B
n-1,分別交曲線y=
(x>0)于點(diǎn)C
1,C
2,…,C
n-1.若C
15B
15=16C
15A
15,則n的值為
.(n為正整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
如圖,已知四邊形ABCD四個(gè)頂點(diǎn)的坐標(biāo)為A(1,3),B(m,0),C(m+2,0),D(5,1),當(dāng)四邊形ABCD的周長(zhǎng)最小時(shí),m的值為
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
已知點(diǎn)P(4-2a,3a-1)在第二象限,則點(diǎn)a的取值范圍為
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來(lái)源:
題型:
某商店經(jīng)銷甲、乙兩種商品. 現(xiàn)有如下信息:
信息1:甲、乙兩種商品的進(jìn)貨單價(jià)之和是3元;
信息2:甲商品零售單價(jià)比進(jìn)貨單價(jià)多1元,乙商品零售單價(jià)比進(jìn)貨單價(jià)的2倍少1元;
信息3:按零售單價(jià)購(gòu)買甲商品3件和乙商品2件,共付了12元.
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)求甲、乙兩種商品的零售單價(jià);
(2)該商店平均每天賣出甲商品500件和乙商品1200件.經(jīng)調(diào)查發(fā)現(xiàn),甲種商品零售單價(jià)每降0.1元,甲種商品每天可多銷售100件.商店決定把甲種商品的零售單價(jià)下降m(m>0)元.在不考慮其他因素的條件下,當(dāng)m為多少時(shí),商店每天銷售甲、乙兩種商品獲取的總利潤(rùn)為1700元?
查看答案和解析>>