精英家教網 > 初中數學 > 題目詳情

【題目】已知∠α=55°34′,則∠α的余角等于

【答案】34°26′
【解析】解:∠α的余角=90°﹣55°34′=89°60′﹣55°34′=34°26′. 所以答案是:34°26′.
【考點精析】本題主要考查了余角和補角的特征的相關知識點,需要掌握互余、互補是指兩個角的數量關系,與兩個角的位置無關才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】在如圖的4×3網格中,每個小正方形的邊長均為1,正方形頂點叫網格格點,連結兩個網格格點的線段叫網格線段.
(1)請你畫一個邊長為的菱形,并求其面積;
(2)若a是圖中能用網格線段表示的最大無理數,b是圖中能用網格線段表示的最小無理數,求a2-2b2的平方根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知a﹣b=1,則a3﹣a2b+b2﹣2ab的值為( 。

A. ﹣2 B. ﹣1 C. 1 D. 2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BDCF成立.

(1)當ABC繞點A逆時針旋轉θ(0°θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.

(2)當ABC繞點A逆時針旋轉45°時,如圖3,延長DB交CF于點H.

求證:BDCF;

當AB=2,AD=3時,求線段DH的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現,當兩個全等的直角三角形如圖1或圖2擺放時,都可以用面積法來證明,下面是小聰利用圖1證明勾股定理的過程:

將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連結DB,過點DBC邊上的高DF,則DF=EC=b﹣a,

∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

請參照上述證法,利用圖2完成下面的證明.

將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在﹣1,2,﹣3,4中,任取3個不同的數相乘,則其中最小的積是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場銷售一批襯衫,平均每天可售出20件,每件盈利40元.為了擴大銷售,增加盈利,商場采取了降價措施.假設在一定范圍內,襯衫的單價每降1元,商場平均每天可多售出2件.如果降價后商場銷售這批襯衫每天盈利1250元,那么襯衫的單價降了多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知∠ABC的兩邊分別與∠DEF的兩邊垂直,且∠ABC=35°,則∠DEF的度數為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】半徑分別為15的兩個圓相交,它們的圓心距可以是(

A. 3B. 4C. 5D. 6

查看答案和解析>>

同步練習冊答案