【題目】如圖,在△ACD中,∠ACD90°,ACb,CDa,ADc,點(diǎn)BCD的延長線上

(1)求證:關(guān)于x的一元二次方程必有實(shí)數(shù)根

(2)當(dāng)b3,CB5時.將線段AD繞點(diǎn)D順時針旋轉(zhuǎn)90°,得到線段DE,連接BE,則當(dāng)a的值為多少時,線段BE的長最短,最短長度是多少?

【答案】1)見解析;(2)當(dāng)a=1時,線段BE最短,最短長度是

【解析】

1)根據(jù)勾股定理得到,代入一元二次方程根的判別式得,即可得證;

2)過EEFBCF,根據(jù)余角的性質(zhì)得到∠DEF=ADC,根據(jù)全等三角形的性質(zhì)得到DF=AC=b=3,EF=CD,設(shè)CD=x,則,于是得出結(jié)論.

1)證明: RtACD中,由勾股定理得:,即

∴關(guān)于x的一元二次方程必有實(shí)數(shù)根

2)過EEFBCF,如圖

∵∠C=ADE=90°

∴∠EFD=C=90°,∠FED+EDF=90°,∠EDF+ADC=90°

∴∠DEF=ADC

在△EDF和△DAC

∴△EDF≌△DACAAS

DF=AC=b=3,EF=CD

設(shè)CD=x,則

的最小值是2

∴當(dāng)CD=1時,BE的最小值是

即當(dāng)a=1時,線段BE最短,最短長度是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+bx+c與直線yx3交于,B兩點(diǎn),其中點(diǎn)Ay軸上,點(diǎn)B坐標(biāo)為(﹣4,﹣5),點(diǎn)Py軸左側(cè)的拋物線上一動點(diǎn),過點(diǎn)PPCx軸于點(diǎn)C,交AB于點(diǎn)D

1)求拋物線對應(yīng)的函數(shù)解析式;

2)以O,AP,D為頂點(diǎn)的平行四邊形是否存在若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,.

1)點(diǎn)從點(diǎn)開始沿邊向的速度移動,點(diǎn)點(diǎn)開始沿邊向點(diǎn)的速度移動.如果點(diǎn)分別從,同時出發(fā),經(jīng)過幾秒,的面積等于

2)點(diǎn)從點(diǎn)開始沿邊向點(diǎn)的速度移動,點(diǎn)點(diǎn)開始沿邊向點(diǎn)的速度移動.如果點(diǎn),分別從,同時出發(fā),線段能否將分成面積相等的兩部分?若能,求出運(yùn)動時間;若不能,請說明理由.

3)若點(diǎn)沿線段方向從點(diǎn)出發(fā)以的速度向點(diǎn)移動,點(diǎn)沿射線方向從點(diǎn)出發(fā)以的速度移動,同時出發(fā),問幾秒后,的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種可食用的野生菌,上市時,外商李經(jīng)理按市場價格30/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測,該野生菌的市場價格將以每天每千克上漲1元;但冷凍存放這批野生菌時每天需要支出各種費(fèi)用合計310元,而且這類野生菌在冷庫中最多保存160天,同時,平均每天有3千克的野生菌損壞不能出售。

1)設(shè)x天后每千克該野生菌的市場價格為y元,試寫出yx之間的函數(shù)關(guān)系式;

2)若存放x天后,將這批野生菌一次性出售,設(shè)這批野生菌的銷售總額為P元,試寫出Px之間的函數(shù)關(guān)系式;

3)李經(jīng)理將這批野生茵存放多少天后出售可獲得最大利潤W元?

(利潤=銷售總額-收購成本-各種費(fèi)用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在單位長度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過網(wǎng)格的交點(diǎn)、、.

1)請完成如下操作:①以點(diǎn)為原點(diǎn)、豎直和水平方向?yàn)檩S、網(wǎng)格邊長為單位長,建立平面直角坐標(biāo)系;②根據(jù)圖形提供的信息,標(biāo)出該圓弧所在圓的圓心,并連接.

2)請在(1)的基礎(chǔ)上,完成下列填空:

①寫出圓心點(diǎn)的坐標(biāo):( , );

的半徑= (結(jié)果保留根號);

③若扇形是一個圓錐的側(cè)面展開圖,則該圓錐的底面的面積為 ;(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:二次函數(shù)的圖象如圖所示,下列結(jié)論中:;的實(shí)數(shù));;,其中正確的是( )

A. 2B. 3C. 4D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把半徑為沿弦折疊,經(jīng)過圓心,則陰影部分的面積為__________.(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)活動小組在一次活動中,對一個數(shù)字問題作如下研究:

(問題發(fā)現(xiàn))如圖①,在等邊三角形ABC中,點(diǎn)MBC上任意一點(diǎn),連接AM,以AM為邊作等邊△AMN,連接CN,判斷CNAB的位置關(guān)系:   ;

(變式探究)如圖②,在等腰三角形ABC中,BABC,點(diǎn)MBC邊上任意一點(diǎn)(不含端點(diǎn)B,C),連接AM,以AM為邊作等腰三角形AMN,使頂角∠AMN=∠ABCMAMN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由.

(解決問題)如圖③,在正方形ADBC中,點(diǎn)MBC邊上一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中心,連接CN,若正方形ADBC的邊長為8,CN,直接寫出正方形AMEF的邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位750名職工積極參加向貧困地區(qū)學(xué)校捐書活動,為了解職工的捐數(shù)量,采用隨機(jī)抽樣的方法抽取30名職工作為樣本,對他們的捐書量進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果共有4本、5本、6本、7本、8本五類,分別用A、B、C、D、E表示,根據(jù)統(tǒng)計數(shù)據(jù)繪制成了如圖所示的不完整的條形統(tǒng)計圖,由圖中給出的信息解答下列問題:

(1)補(bǔ)全條形統(tǒng)計圖;

(2)求這30名職工捐書本數(shù)的平均數(shù)、眾數(shù)和中位數(shù);

(3)估計該單位750名職工共捐書多少本?

查看答案和解析>>

同步練習(xí)冊答案