【題目】已知:二次函數(shù)的圖象如圖所示,下列結(jié)論中:;的實(shí)數(shù));;,其中正確的是( )

A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 1個(gè)

【答案】A

【解析】

由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.

解:①∵拋物線的開口向上,∴a0,

∵與y軸的交點(diǎn)為在y軸的負(fù)半軸上,∴c0

∵對(duì)稱軸為0,

a、b異號(hào),即b0,

又∵c0,∴abc0,

故①正確;

②∵對(duì)稱軸為a0,

01

b2a

2ab0;

故②錯(cuò)誤;

③當(dāng)x1時(shí),y1abc;

當(dāng)xm時(shí),y2mamb)+c,當(dāng)m1,y2y1,即可得mamb)>ab,當(dāng)-1m1,y2y1即可得mamb)<ab,所以不能確定;

故③錯(cuò)誤;

④當(dāng)x1時(shí),abc0;

當(dāng)x1時(shí),abc0;

∴(abc)(abc)=0,即(ac2b20,

∴(ac2b2

故④錯(cuò)誤;

⑤當(dāng)x1時(shí),abc2;

當(dāng)x1時(shí),abc0,

ac1,

a1+(c)>1,即a1;

故⑤正確;

綜上所述,正確的是①⑤,有2個(gè),

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為九年級(jí)數(shù)學(xué)競(jìng)賽獲獎(jiǎng)選手購(gòu)買以下三種獎(jiǎng)品,其中小筆記本每本5元,大筆記本每本7元,鋼筆每支10元,購(gòu)買的大筆記本的數(shù)量是鋼筆數(shù)量的2倍,共花費(fèi)346元,若使購(gòu)買的獎(jiǎng)品總數(shù)最多,則這三種獎(jiǎng)品的購(gòu)買數(shù)量各為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,對(duì)于點(diǎn)Pxy)和Qx,y),給出如下定義:若y,則稱點(diǎn)Q為點(diǎn)P可控變點(diǎn).請(qǐng)問(wèn):若點(diǎn)P在函數(shù)y=﹣x2+16(﹣5≤xa)的圖象上,其可控變點(diǎn)Q的縱坐標(biāo)y的取值范圍是﹣16≤y′≤16,則實(shí)數(shù)a的值是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,BAD=100°,DBC=80°.

(1)求證:BD=CD;

(2)若圓O的半徑為9,求的長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ACD中,∠ACD90°,ACb,CDa,ADc,點(diǎn)BCD的延長(zhǎng)線上

(1)求證:關(guān)于x的一元二次方程必有實(shí)數(shù)根

(2)當(dāng)b3,CB5時(shí).將線段AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,得到線段DE,連接BE,則當(dāng)a的值為多少時(shí),線段BE的長(zhǎng)最短,最短長(zhǎng)度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,2),B(p,q)在直線上,拋物線m經(jīng)過(guò)點(diǎn)B、C(p+4,q),且它的頂點(diǎn)N在直線l.

(1)B(-2,1),

①請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出直線l與拋物線m的示意圖;

②設(shè)拋物線m上的點(diǎn)Q的模坐標(biāo)為e(-2≤e≤0)過(guò)點(diǎn)Qx軸的垂線,與直線l交于點(diǎn)H.QH=d,當(dāng)de的增大面增大時(shí),求e的取值范圍

(2)拋物線my軸交于點(diǎn)F,當(dāng)拋物線mx軸有唯一交點(diǎn)時(shí),判斷NOF的形狀并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)(利潤(rùn)=售價(jià)﹣制造成本)

(1)寫出每月的利潤(rùn)w(萬(wàn)元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;

(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬(wàn)元的利潤(rùn)?

(3)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結(jié)論:AFBG;BN=NF;;S四邊形CGNF=S四邊形ANGD.其中正確的結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形。

1)如圖1,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60得到△DBE,DCB=30,連接AD,DC,CE

①求證:△BCE是等邊三角形;

②求證:四邊形ABCD是勾股四邊形。

2)如圖2已知等邊ABC的邊長(zhǎng)等于4平面上存在一點(diǎn)P若使四邊形PABC形成勾股四邊形且PC=2PA,PC不能同時(shí)成為一組勾股邊,直接寫出此時(shí)PBC的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案