【題目】已知:二次函數(shù)的圖象如圖所示,下列結(jié)論中:①;②;③(的實(shí)數(shù));④;⑤,其中正確的是( )
A. 2個(gè)B. 3個(gè)C. 4個(gè)D. 1個(gè)
【答案】A
【解析】
由拋物線的開口方向判斷a的符號(hào),由拋物線與y軸的交點(diǎn)判斷c的符號(hào),然后根據(jù)對(duì)稱軸及拋物線與x軸交點(diǎn)情況進(jìn)行推理,進(jìn)而對(duì)所得結(jié)論進(jìn)行判斷.
解:①∵拋物線的開口向上,∴a>0,
∵與y軸的交點(diǎn)為在y軸的負(fù)半軸上,∴c<0,
∵對(duì)稱軸為>0,
∴a、b異號(hào),即b<0,
又∵c<0,∴abc>0,
故①正確;
②∵對(duì)稱軸為,a>0,
∴0<<1,
∴b<2a,
∴2a+b>0;
故②錯(cuò)誤;
③當(dāng)x=1時(shí),y1=a+b+c;
當(dāng)x=m時(shí),y2=m(am+b)+c,當(dāng)m>1,y2>y1,即可得m(am+b)>a+b,當(dāng)-1<m<1,y2<y1即可得m(am+b)<a+b,所以不能確定;
故③錯(cuò)誤;
④當(dāng)x=1時(shí),a+b+c=0;
當(dāng)x=1時(shí),ab+c>0;
∴(a+b+c)(ab+c)=0,即(a+c)2b2=0,
∴(a+c)2=b2;
故④錯(cuò)誤;
⑤當(dāng)x=1時(shí),ab+c=2;
當(dāng)x=1時(shí),a+b+c=0,
∴a+c=1,
∴a=1+(c)>1,即a>1;
故⑤正確;
綜上所述,正確的是①⑤,有2個(gè),
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為九年級(jí)數(shù)學(xué)競(jìng)賽獲獎(jiǎng)選手購(gòu)買以下三種獎(jiǎng)品,其中小筆記本每本5元,大筆記本每本7元,鋼筆每支10元,購(gòu)買的大筆記本的數(shù)量是鋼筆數(shù)量的2倍,共花費(fèi)346元,若使購(gòu)買的獎(jiǎng)品總數(shù)最多,則這三種獎(jiǎng)品的購(gòu)買數(shù)量各為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:若y′=,則稱點(diǎn)Q為點(diǎn)P的“可控變點(diǎn)”.請(qǐng)問(wèn):若點(diǎn)P在函數(shù)y=﹣x2+16(﹣5≤x≤a)的圖象上,其“可控變點(diǎn)”Q的縱坐標(biāo)y′的取值范圍是﹣16≤y′≤16,則實(shí)數(shù)a的值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于圓O,連結(jié)BD,∠BAD=100°,∠DBC=80°.
(1)求證:BD=CD;
(2)若圓O的半徑為9,求的長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ACD中,∠ACD=90°,AC=b,CD=a,AD=c,點(diǎn)B在CD的延長(zhǎng)線上
(1)求證:關(guān)于x的一元二次方程必有實(shí)數(shù)根
(2)當(dāng)b=3,CB=5時(shí).將線段AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,得到線段DE,連接BE,則當(dāng)a的值為多少時(shí),線段BE的長(zhǎng)最短,最短長(zhǎng)度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,2),B(p,q)在直線上,拋物線m經(jīng)過(guò)點(diǎn)B、C(p+4,q),且它的頂點(diǎn)N在直線l上.
(1)若B(-2,1),
①請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出直線l與拋物線m的示意圖;
②設(shè)拋物線m上的點(diǎn)Q的模坐標(biāo)為e(-2≤e≤0)過(guò)點(diǎn)Q作x軸的垂線,與直線l交于點(diǎn)H.若QH=d,當(dāng)d隨e的增大面增大時(shí),求e的取值范圍;
(2)拋物線m與y軸交于點(diǎn)F,當(dāng)拋物線m與x軸有唯一交點(diǎn)時(shí),判斷△NOF的形狀并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過(guò)程中發(fā)現(xiàn),每月銷售量y(萬(wàn)件)與銷售單價(jià)x(元)之間的關(guān)系可以近似地看作一次函數(shù)(利潤(rùn)=售價(jià)﹣制造成本).
(1)寫出每月的利潤(rùn)w(萬(wàn)元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得350萬(wàn)元的利潤(rùn)?
(3)當(dāng)銷售單價(jià)為多少元時(shí),廠商每月能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,BE=EF=FC,CG=2GD,BG分別交AE,AF于M,N.下列結(jié)論:①AF⊥BG;②BN=NF;③;④S四邊形CGNF=S四邊形ANGD.其中正確的結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱該四邊形為勾股四邊形。
(1)如圖1,將△ABC繞頂點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)60得到△DBE,∠DCB=30,連接AD,DC,CE
①求證:△BCE是等邊三角形;
②求證:四邊形ABCD是勾股四邊形。
(2)如圖2已知等邊ABC的邊長(zhǎng)等于4平面上存在一點(diǎn)P若使四邊形PABC形成勾股四邊形且PC=2,PA,PC不能同時(shí)成為一組勾股邊,直接寫出此時(shí)PBC的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com