【題目】閱讀理解:若A、B、C為數(shù)軸上三點,若點C到A的距離是點C到B的距離2倍,我們就稱點C是(A,B)的好點.
例如,如圖1,點A表示的數(shù)為-1,點B表示的數(shù)為2.表示1的點C到點A的距離是2,到點B的距離是1,那么點C是(A,B)的好點;
又如,表示0的點D到點A的距離是1,到點B的距離是2,那么點D就不是(A,B)的好點,但點D是(B,A)的好點.
知識運用:如圖2,M、N為數(shù)軸上兩點,點M所表示的數(shù)為-2,點N所表示的數(shù)為4.
(1)數(shù)_______________________ 所表示的點是(M,N)的好點;
(2)數(shù)________________________ 所表示的點是(N,M)的好點;
(溫馨提示:注意考慮M,N的左側、右側,不要漏掉答案)
(3)如圖(3)A,B為數(shù)軸上的兩點,點A所表示的數(shù)為-20,點B表示的數(shù)為 40,現(xiàn)有一只電子螞蟻P從點B出發(fā),以2單位每秒的速度一直向左運動,
①當t為何值時,P是(A,B)的好點?
②當t為何值時,P是(B,A)的好點?
【答案】(1)2或10;(2)0或-8;(3)①t=10,②t=20或60
【解析】
(1)設所求數(shù)為x,根據(jù)好點的定義列出方程,解方程即可;
(2)設所求數(shù)為y,根據(jù)好點的定義列出方程,解方程即可;
(3)①根據(jù)好點的定義列出方程,解方程即可;
②根據(jù)好點的定義列出方程,解方程即可;
解:(1)設所求數(shù)為x,由題意得
x-(-2)=2(4-x),或x-(-2)=2(x-4),
解得x=2或10;
故答案為:2或10;
(2)2[y-(-2)]=4-y或2(-2-y)=4-y
解得x=0或-8;
故答案為:0或-8;
(3)①P為【A,B】的好點.
由題意,得60-2t=4t,
解得t=10,
②P為【B,A】的好點.
由題意得2(60-2t)=2t,或2t=2(2t-60)
解得t=20或60
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠EDF的度數(shù)為( )
A.34°B.56°C.62°D.28°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于A,B兩點,并經(jīng)過點C,已知點A的坐標是(﹣6,0),點C的坐標是(﹣8,﹣6).
(1)求拋物線的解析式;
(2)求拋物線的頂點坐標及點B的坐標;
(3)設拋物線的對稱軸與x軸交于點D,連接CD,并延長CD交拋物線于點E,連接AC,AE,求△ACE的面積;
(4)拋物線上有一個動點M,與A,B兩點構成△ABM,是否存在S△ADM=S△ACD?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,
以下各層均比上一層多一個圓圈,一共堆了n 層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以
算出圖1中所有圓圈的個數(shù)為1+2+3+…+n=.
如果圖中的圓圈共有13層,請解決下列問題:
(1)我們自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)1,2,3,4,……,則最底層最左
邊這個圓圈中的數(shù)是 ;
(2)我們自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數(shù)-23,-22,-21,-20,……,求
最底層最右邊圓圈內的數(shù)是_______;
(3)求圖4中所有圓圈中各數(shù)的絕對值之和.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線y1=x+m與x軸、y軸分別交于點A、B,與雙曲線(x<0)分別交于點C、D,且C點的坐標為(﹣1,2).
(1)分別求出直線AB及雙曲線的解析式;
(2)求出點D的坐標;
(3)利用圖象直接寫出:當x在什么范圍內取值時,y1>y2?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一塊矩形鐵皮,將四個角各剪去一個邊長為2米的正方形后,剩下的部分做成一個容積為90立方米的無蓋長方體箱子,已知長方體箱子底面的長比寬多4米,求矩形鐵皮的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=80cm,AB=40cm,半徑為8cm的⊙O在矩形內且與AB、AD均相切.現(xiàn)有動點P從A點出發(fā),在矩形邊上沿著A→B→C→D的方向勻速移動,當點P到達D點時停止移動;⊙O在矩形內部沿AD向右勻速平移,移動到與CD相切時立即沿原路按原速返回,當⊙O回到出發(fā)時的位置(即再次與AB相切)時停止移動.已知點P與⊙O同時開始移動,同時停止移動(即同時到達各自的終止位置).當⊙O到達⊙O1的位置時(此時圓心O1在矩形對角線BD上),DP與⊙O1恰好相切,此時⊙O移動了( 。cm.
A.56B.72C.56或72D.不存在
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E對角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為點F,則EF的長為( )
A. 1B. 4-C. D. -4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家需要用鋼管做防盜窗,按設計要求,其中需要長為 0.8m,2.5m 且粗細相同的鋼管分別為 100 根,32 根,并要求這些用料不能是焊接而成的.現(xiàn)鋼材市場的這種規(guī)格的鋼管每根為 6m.
(1)試問一根 6m 長的圓鋼管有哪些裁剪方法呢?請?zhí)顚懴驴眨ㄓ嗔献鲝U).
方法①:當只裁剪長為 0.8m 的用料時,最多可剪 根;
方法②:當先剪下 1 根 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根;
方法③:當先剪下 2 根 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根.
(2)分別用(1)中的方法②和方法③各裁剪多少根 6m 長的鋼管,才能剛好得到所需要的相應數(shù)量的材料?
(3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要 6m 長的鋼管與(2) 中根數(shù)相同?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com