如圖,在矩形OABC 中,OA=5,AB=4,點(diǎn)D 為邊AB 上一點(diǎn),將△BCD 沿直線CD 折疊,使點(diǎn)B 恰好落在OA邊上的點(diǎn)E 處,分別以OC,OA 所在的直線為x 軸,y 軸建立平面直角坐標(biāo)系.
(1)求OE 的長及經(jīng)過O,D,C 三點(diǎn)的拋物線的解析式;
(2)一動點(diǎn)P 從點(diǎn)C 出發(fā),沿CB 以每秒2 個單位長的速度向點(diǎn)B 運(yùn)動,同時動點(diǎn)Q 從E 點(diǎn)出發(fā),沿EC 以每秒1 個單位長的速度向點(diǎn)C 運(yùn)動,當(dāng)點(diǎn)P 到達(dá)點(diǎn)B 時,兩點(diǎn)同時停止運(yùn)動.設(shè)運(yùn)動時間為t 秒,當(dāng)t為何值時,DP=DQ;
(3)若點(diǎn)N 在(1)中的拋物線的對稱軸上,點(diǎn)M 在拋物線上,是否存在這樣的點(diǎn)M與點(diǎn)N,使得以M,N,C,E 為頂點(diǎn)的四邊形是平行四邊形?若存在,請求出M 點(diǎn)的坐標(biāo);若不存在,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,小敏做了一個角平分儀ABCD,其中AB=AD,BC=DC,將儀器上的點(diǎn)A與∠PRQ的頂點(diǎn)R重合,調(diào)整AB和AD,使它們分別落在角的兩邊上,過點(diǎn)A,C畫一條射線AE,AE就是∠PRQ的平分線。此角平分儀的畫圖原理是:根據(jù)儀器結(jié)構(gòu),可得
△ABC≌△ADC,這樣就有∠QAE=∠PAE。則說明這兩個三角形全等的依據(jù)是
A. SAS B. ASA C. AAS D. SSS
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長為4,頂點(diǎn)A、C分別在x軸、y軸的正半軸,拋物線y=﹣x2+bx+c經(jīng)過B、C兩點(diǎn),點(diǎn)D為拋物線的頂點(diǎn),連接AC、BD、CD.
(1)求此拋物線的解析式.
(2)求此拋物線頂點(diǎn)D的坐標(biāo)和四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,點(diǎn)A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點(diǎn)M、P,CD交BE于點(diǎn)Q,連接PQ,BM.下列結(jié)論:①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC.其中結(jié)論正確的有
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知,如圖在四邊形ABCD中,AB∥CD,E,F為對角線AC上兩點(diǎn),且AE=CF,DF∥BE,AC平分∠BAD.求證:四邊形ABCD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AD∥CB,∠D=43°,∠B=25°,則∠DEB的度數(shù)為( 。
A. 72° B. 68° C. 63° D. 18°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
直角三角形斜邊上的中線把直角三角形分成的兩個三角形的關(guān)系是( )
(A)形狀相同。˙) 周長相等。–) 面積相等 (D) 全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在一幅長80cm,寬50cm的矩形風(fēng)景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如圖所示,如果要使整個掛圖的面積是5400cm2,設(shè)金色紙邊的寬為xcm,那么x滿足的方程是( )
(A)x2+130x-1400=0 (B)x2+65x-350=0
(C)x2-130x-1400=0 (D)x2-65x-350=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com