【題目】方程x2﹣6x+9=0的解是

【答案】x1=x2=3
【解析】解:∵x2﹣6x+9=0
∴(x﹣3)2=0
∴x1=x2=3.
【考點精析】本題主要考查了配方法的相關(guān)知識點,需要掌握左未右已先分離,二系化“1”是其次.一系折半再平方,兩邊同加沒問題.左邊分解右合并,直接開方去解題才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線相交于點O,且AB≠AD,過O作OE⊥BD交BC于點E.若△CDE的周長為10,則平行四邊形ABCD的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】餐桌邊的一蔬一飯,舌尖上的一飲一酌,實屬來之不易,舌尖上的浪費讓人觸目驚心.據(jù)統(tǒng)計,中國每年浪費的食物總量折合糧食約500億千克,這個數(shù)據(jù)用科學(xué)記數(shù)法表示為(

A.5×109千克 B.50×109千克

C.5×1010千克 D.0.5×1011千克

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長都為整數(shù)的△ABC≌△DEF ,AB與DE是對應(yīng)邊,AB=2,BC=4,若△DEF的周長為偶數(shù),則 DF的取值為( )
A.3
B.4
C.5
D.3或4或5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了增強學(xué)生體質(zhì),決定開設(shè)以下體育課外活動項目:A.籃球 B.乒乓球C.羽毛球 D.足球,為了解學(xué)生最喜歡哪一種活動項目,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖,

請回答下列問題:

1)這次被調(diào)查的學(xué)生共有多少人?

2)請你將條形統(tǒng)計圖(2)補充完整;

3)在平時的乒乓球項目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:運用“同一圖形的面積相等”可以證明一些含有線段的等式成立,這種解決問題的方法我們稱之為面積法. 如圖1,在等腰△ABC中,AB=AC, AC邊上的高為h,點M為底邊BC上的任意一點,點M到腰AB、AC的距離分別為h1、h2,連接AM,利用SABC=SABMSACM,可以得出結(jié)論:h= h1h2.

類比探究:在圖1中,當(dāng)點MBC的延長線上時,猜想h、h1h2之間的數(shù)量關(guān)系并證明你的結(jié)論.

拓展應(yīng)用:如圖2,在平面直角坐標(biāo)系中,有兩條直線l1y =x+3,l2y =-3x+3,若l2上一點Ml1的距離是1,試運用 “閱讀理解”和“類比探究”中獲得的結(jié)論,求出點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線y=﹣x+2與反比例函數(shù)y=的圖象有唯一公共點,若直線y=﹣x+b與反比例函數(shù)y=的圖象有2個公共點,則b的取值范圍是(  )

A. b>2 B. ﹣2<b<2 C. b>2或b<﹣2 D. b<﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為m

1)求該拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;

2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?

3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分12分)已知,直線AP是過正方形ABCD頂點A的任一條直線(不過B、C、D三點),點B關(guān)于直線AP的對稱點為E,連結(jié)AEBE、DE,直線DE交直線AP于點F

1)如圖1,直線AP與邊BC相交.

∠PAB=20°,則∠ADF= °,∠BEF= °

請用等式表示線段AB、DF、EF之間的數(shù)量關(guān)系,并說明理由;

2)如圖2,直線AP在正方形ABCD的外部,且,,求線段AF的長.

查看答案和解析>>

同步練習(xí)冊答案