【題目】A、B、C三人玩籃球傳球游戲,游戲規(guī)則是:第一次傳球由A將球隨機(jī)地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機(jī)地傳給其他兩人中的某一人.
(1)求兩次傳球后,球恰在B手中的概率;
(2)求三次傳球后,球恰在A手中的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC⊥BC,AD⊥BD,E為AB的中點(diǎn),
(1)如圖1,求證:△ECD是等腰三角形;
(2)如圖2,CD與AB交點(diǎn)為F,若AD=BD,EF=3,DE=4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:直線l1與l2相交于點(diǎn)O,對(duì)于平面內(nèi)任意一點(diǎn)M,點(diǎn)M到直線l1、l2的距離分別為p、q,則稱有序?qū)崝?shù)對(duì)(p,q)是點(diǎn)M的“距離坐標(biāo)”,根據(jù)上述定義,“距離坐標(biāo)”是(1,2)的點(diǎn)的個(gè)數(shù)是( 。
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y= x2+2x與x軸相交于O、B,頂點(diǎn)為A,連接OA.
(1)求點(diǎn)A的坐標(biāo)和∠AOB的度數(shù);
(2)若將拋物線y= x2+2x向右平移4個(gè)單位,再向下平移2個(gè)單位,得到拋物線m,其頂點(diǎn)為點(diǎn)C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點(diǎn)C′是否在拋物線y= x2+2x上,請說明理由.
(4)若點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),試探究在拋物線m上是否存在點(diǎn)Q,使以點(diǎn)O、P、C、Q為頂點(diǎn)的四邊形是平行四邊形,且OC為該四邊形的一條邊?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由. (參考公式:二次函數(shù)y=ax2+bx+c(a≠0)圖象的頂點(diǎn)坐標(biāo)為( , ),對(duì)稱軸是直線x= .)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙從筆試、面試、體能三個(gè)方面進(jìn)行量化考核.甲、乙、丙各項(xiàng)得分如下表:
筆 試 | 面 試 | 體 能 | |
甲 | 85 | 80 | 75 |
乙 | 80 | 90 | 73 |
丙 | 83 | 79 | 90 |
(1)根據(jù)三項(xiàng)得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計(jì)入總分(不計(jì)其他因素條件),請你說明誰將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某同學(xué)對(duì)多項(xiàng)式(a2-4a+2)(a2-4a+6)+4進(jìn)行因式分解的過程:
解:設(shè)a2-4a=y(tǒng),則
原式=(y+2)(y+6)+4(第一步)
=y(tǒng)2+8y+16(第二步)
=(y+4)2(第三步)
=(a2-4a+4)2.(第四步)
(1)該同學(xué)因式分解的結(jié)果是否徹底:________(填“徹底”或“不徹底”);
(2)若不徹底,請你直接寫出因式分解的最后結(jié)果:________;
(3)請你模仿以上方法對(duì)多項(xiàng)式(x2-2x)(x2-2x+2)+1進(jìn)行因式分解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雖然近幾年無錫市政府加大了太湖水治污力度,但由于大規(guī)模、高強(qiáng)度的經(jīng)濟(jì)活動(dòng)和日益增加的污染負(fù)荷,使部分太湖水域水質(zhì)惡化,富營養(yǎng)化不斷加劇.為了保護(hù)水資源,我市制定一套節(jié)水的管理措施,其中對(duì)居民生活用水收費(fèi)作如下規(guī)定:
月用水量(噸) | 單價(jià)(元/噸) |
不大于10噸部分 | 1.5 |
大于10噸不大于m噸部分(20≤m≤50) | 2 |
大于m噸部分 | 3 |
(1)若某用戶六月份用水量為18噸,求其應(yīng)繳納的水費(fèi);
(2)記該用戶六月份用水量為x噸,繳納水費(fèi)為y元,試列出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該用戶六月份用水量為40噸,繳納水費(fèi)y元的取值范圍為70≤y≤90,試求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊直角三角尺的60°角和90°角的頂點(diǎn)A疊放在一起.將三角尺ADE繞點(diǎn)A旋轉(zhuǎn),旋轉(zhuǎn)過程中三角尺ADE的邊AD始終在∠BAC的內(nèi)部在旋轉(zhuǎn)過程中,探索:
(1)∠BAE與∠CAD的度數(shù)有何數(shù)量關(guān)系,并說明理由;
(2)試說明∠CAE﹣∠BAD=30°;
(3)作∠BAD和∠CAE的平分線AM、AN,在旋轉(zhuǎn)過程中∠MAN的值是否發(fā)生變化?若不變,請求出這個(gè)定值;若變化,請求出變化范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,∠BAC的平分線AD與邊BC的垂直平分線MD相交于點(diǎn)D,DE⊥AB交AB的延長線于點(diǎn)E,DF⊥AC于點(diǎn)F,現(xiàn)有下列結(jié)論:①DE=DF;②DE+DF=AD;③DM平分∠ADF;④AB+AC=2AE.其中,正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com