【題目】《莊子·天下》:“一尺之棰,日取其半,萬世不竭.”意思是說:一尺長的木棍,每天截掉一半,永遠(yuǎn)也截不完.我國智慧的古代人在兩千多年前就有了數(shù)學(xué)極限思想,今天我們運(yùn)用此數(shù)學(xué)思想研究下列問題.
(規(guī)律探索)
(1)如圖1所示的是邊長為1的正方形,將它剪掉一半,則S陰影1=1-=__________;
如圖2,在圖1的基礎(chǔ)上,將陰影部分再裁剪掉—半,則S陰影2=1--()2=_______;
同種操作,如圖3,S陰影3=1--()2-()3=__________;
如圖4,S陰影4=1--()2-()3-()4=___________;
……
若同種地操作n次,則S陰影n=1--()2-()3-…-()n=_________.
(規(guī)律歸納)
(2)直接寫出+++…+的化簡結(jié)果:_________.
(規(guī)律應(yīng)用)
(3)直接寫出算式+++…+的值:__________.
【答案】(1);;;;()n;(2);(3).
【解析】
(1)結(jié)合圖形計(jì)算即可求出,按照規(guī)律推出S陰影n的表達(dá)式即可;
(2)由上面的規(guī)律可得1----…-=,然后轉(zhuǎn)換得到+++…+再化簡即可;
(3)把(2)的化簡結(jié)果計(jì)算即可得出.
(1)根據(jù)圖像和計(jì)算直接可得S陰影1=1-=;
S陰影2=1--()2=;
S陰影3=1--()2-()3=;
S陰影4=1--()2-()3-()4=;
由此可以發(fā)現(xiàn)規(guī)律1--()2-()3-…一直減下去,答案就等于減去的最后一個(gè)數(shù)的值;
故S陰影n=1--()2-()3-…-()n=()n.
(2)由上面的規(guī)律可得1----…-=,
即+++…+=1-=.
(3) +++…+=1-=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定“中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí)”.為此,某市就“每天在校體育活動(dòng)時(shí)間”的問題隨機(jī)抽樣調(diào)查了321名初中學(xué)生.根據(jù)調(diào)查結(jié)果將學(xué)生每天在校體育活動(dòng)時(shí)間t(小時(shí))分成,,,四組,并繪制了統(tǒng)計(jì)圖(部分).
組:組:組:組:
請(qǐng)根據(jù)上述信息解答下列問題:
(1)組的人數(shù)是 ;
(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在 組內(nèi);
(3)若該市約有12840名初中學(xué)生,請(qǐng)你估算其中達(dá)到國家規(guī)定體育活動(dòng)時(shí)間的人數(shù)大約有多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,∠ABC,∠BCD的平分線分別交AD于點(diǎn)E,F,BE,CF相交于點(diǎn)G.
(1)求證:BE⊥CF;
(2)若AB=a,CF=b,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,把R△ABC繞著B點(diǎn)逆時(shí)針旋轉(zhuǎn),得到Rt△DBE,點(diǎn)E在AB上 .
(1)若∠BDA=70°,求∠BAC的度數(shù);
(2)若BC=8,AC=6,求△ABD中AD邊上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A(0,2),B(4,0),C(4,3)三點(diǎn).
(1)建立平面直角坐標(biāo)系并描出A、B、C三點(diǎn)
(2)求△ABC的面積;
(3)如果在第二象限內(nèi)有一點(diǎn)P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿足條件的P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)軸上5與﹣2所對(duì)的兩點(diǎn)之間的距離:|5﹣(﹣2)|=7;
在數(shù)軸上﹣2與3所對(duì)的兩點(diǎn)之間的距離:|﹣2﹣3|=5;
在數(shù)軸上﹣8與﹣5所對(duì)的兩點(diǎn)之間的距離:|(﹣8)﹣(﹣5)|=3
在數(shù)軸上點(diǎn)A、B分別表示數(shù)a、b,則A、B兩點(diǎn)之間的距離AB=|a﹣b|=|b﹣a|
回答下列問題:
(1)數(shù)軸上表示﹣2和﹣5的兩點(diǎn)之間的距離是_____;
數(shù)軸上表示數(shù)x和3的兩點(diǎn)之間的距離表示為_____;
數(shù)軸上表示數(shù)_____和_____的兩點(diǎn)之間的距離表示為|x+2|,;
(2)七年級(jí)研究性學(xué)習(xí)小組在數(shù)學(xué)老師指導(dǎo)下,對(duì)式子|x+2|+|x﹣3|進(jìn)行探究:
①請(qǐng)你在草稿紙上畫出數(shù)軸,當(dāng)表示數(shù)x的點(diǎn)在﹣2與3之間移動(dòng)時(shí),|x﹣3|+|x+2|的值總是一個(gè)固定的值為:_____.
②請(qǐng)你在草稿紙上畫出數(shù)軸,要使|x﹣3|+|x+2|=7,數(shù)軸上表示點(diǎn)的數(shù)x=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,以AC為邊在△ABC外作等腰△ACD,其中AC=AD
(1) 如圖1,若AB為邊在△ABC外作△ABE,AB=AE,∠DAC=∠EAB=60°,求∠BFC的度數(shù)
(2) 如圖2,∠ABC=α,∠ACD=β,BC=6,BD=8
① 若α=30°,β=60°,AB的長為
② 若改變?chǔ)、β的大小,但α+β?0°,求△ABC的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,D、E分別為AB、AC上的點(diǎn),線段BE、CD相交于點(diǎn)O,且.
求證: ∽;
求證: ;
若M、N分別是BE、CD的中點(diǎn),過MN的直線交AB于P,交AC于Q,線段AP、AQ相等嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某花店準(zhǔn)備購進(jìn)甲、乙兩種花卉,若購進(jìn)甲種花卉20盆,乙種花卉50盆,需要720元;若購進(jìn)甲種花卉40盆,乙種花卉30盆,需要880元.
(1)求購進(jìn)甲、乙兩種花卉,每盆各需多少元?
(2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準(zhǔn)備拿出800元全部用來購進(jìn)這兩種花卉,設(shè)購進(jìn)甲種花卉x盆,全部銷售后獲得的利潤為W元,求W與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,考慮到顧客需求,要求購進(jìn)乙種花卉的數(shù)量不少于甲種花卉數(shù)量的6倍,且不超過甲種花卉數(shù)量的8倍,那么該花店共有幾種購進(jìn)方案?在所有的購進(jìn)方案中,哪種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com