【題目】如圖,正方形ABCD的對角線AC,BD相交于點(diǎn)O,將BD向兩個方向延長,分別至點(diǎn)E和點(diǎn)F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,直接寫出菱形AECF的邊長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,已知直線AB的函數(shù)解析式為y=﹣2x+8,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)P(m,n)為線段AB上的一個動點(diǎn)(與A、B不重合),作PE⊥x軸于點(diǎn)E,PF⊥y軸于點(diǎn)F,連接EF,問:
①若△PAO的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出m的取值范圍;
②是否存在點(diǎn)P,使EF的值最?若存在,求出EF的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值與x無關(guān),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】旅游公司在景區(qū)內(nèi)配置了50輛觀光車共游客租賃使用,假定每輛觀光車一天內(nèi)最多只能出租一次,且每輛車的日租金x(元)是5的倍數(shù).發(fā)現(xiàn)每天的營運(yùn)規(guī)律如下:當(dāng)x不超過100元時,觀光車能全部租出;當(dāng)x超過100元時,每輛車的日租金每增加5元,租出去的觀光車就會減少1輛.已知所有觀光車每天的管理費(fèi)是1100元.
(1)優(yōu)惠活動期間,為使觀光車全部租出且每天的凈收入為正,則每輛車的日租金至少應(yīng)為多少元?(注:凈收入=租車收入﹣管理費(fèi))
(2)當(dāng)每輛車的日租金為多少元時,每天的凈收入最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列說法錯誤的是( ).
①∠1和∠3是同位角;②∠1和∠5是同位角;③∠1和∠2是同旁內(nèi)角;④∠1和∠4是內(nèi)錯角.
A. ①② B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,Rt△ABC的直角邊AB在x軸上,∠ABC=90°.點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)C的坐標(biāo)為(3,4),M是BC邊的中點(diǎn),函數(shù)()的圖象經(jīng)過點(diǎn)M.
(1)求k的值;
(2)將△ABC繞某個點(diǎn)旋轉(zhuǎn)180°后得到△DEF(點(diǎn)A,B,C的對應(yīng)點(diǎn)分別為點(diǎn)D,E,F(xiàn)),且EF在y軸上,點(diǎn)D在函數(shù)()的圖象上,求直線DF的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=-x+2與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,另一直線y=kx+b(k≠0)經(jīng)過點(diǎn)C(1,0),且把△AOB分成兩部分.
(1)若△AOB被分成的兩部分面積相等,求k和b的值;
(2)若△AOB被分成的兩部分面積比為1∶5,求k和b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】佳佳果品店在批發(fā)市場購買某種水果銷售,第一次用1200元購進(jìn)若干千克,并以每千克8元出售,很快售完.由于水果暢銷,第二次購買時,每千克的進(jìn)價比第一次提高了10%,用1452元所購買的數(shù)量比第一次多20千克,以每千克9元售出100千克后,因出現(xiàn)高溫天氣,水果不易保鮮,為減少損失,便降價50%售完剩余的水果.
(1)求第一次水果的進(jìn)價是每千克多少元?
(2)該果品店在這兩次銷售中,總體上是盈利還是虧損?盈利或虧損了多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com