【題目】(分)如圖,管中放置著三根同樣的繩子, , .
()小明從這三根繩子中隨機(jī)選一根,恰好選中繩子的概率是__________.
()小明先從左端, , 三個繩頭中隨機(jī)選兩個打一個結(jié),再從右端, , 三個繩頭中隨機(jī)選兩個打一個結(jié),求這三根繩子能連結(jié)成一根長繩的概率.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點A按逆時針方向旋轉(zhuǎn)120°得到△AB'C'(點B的對應(yīng)點是點B',點C的對應(yīng)點是點C'),連接BB',若AC'∥BB',則∠C'AB'的度數(shù)為( )
A.20°B.30°C.40°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點E在直線BC上,連接AE.將△ABE沿AE所在直線折疊,點B的對應(yīng)點是點B′,連接AB′并延長交直線DC于點F.
(1)當(dāng)點F與點C重合時如圖1,證明:DF+BE=AF;
(2)當(dāng)點F在DC的延長線上時如圖2,當(dāng)點F在CD的延長線上時如圖3,線段DF、BE、AF有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,并選擇一種情況給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
(1)若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,BP= cm,CQ= cm.
(2)若點Q的運動速度與點P的運動速度相等,經(jīng)過1s后,△BPD與△CQP是否全等,請說明理由;
(3)若點Q的運動速度與點P的運動速度不相等,當(dāng)點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(4)若點Q以(3)中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經(jīng)過多長時間點P與點Q第一次相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是高,BE是中線,CF是角平分線,CF交AD于G,交BE于H.下列結(jié)論:①S△ABE=S△BCE;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.其中所有正確結(jié)論的序號是
A.①②③④B.①②③C.②④D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有甲、乙兩個不透明的布袋,甲袋中有3個完全相同的小球,分別標(biāo)有數(shù)字0,1和2;乙袋中有3個完全相同的小球,分別標(biāo)有數(shù)字1,2和3,小明從甲袋中隨機(jī)取出1個小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)取出1個小球,記錄標(biāo)有的數(shù)字為y,這樣確定了點M的坐標(biāo)(x,y).
(1)寫出點M所有可能的坐標(biāo);
(2)求點M在直線上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】程大位是我國明朝商人,珠算發(fā)明家,他60歲時完成的《直指算法綜宗》是東方古代數(shù)學(xué)名著,詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用法,書中有如下問題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚得幾丁,意思是:有100個和尚分100個饅頭,如果大和尚1人分3個,小和尚3人分1個,正好分完,大、小和尚各有多少人,則小和尚有__________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自學(xué)下面材料后,解答問題。
分母中含有未知數(shù)的不等式叫分式不等式。如: <0等。那么如何求出它們的解集呢?
根據(jù)我們學(xué)過的有理數(shù)除法法則可知:兩數(shù)相除,同號得正,異號得負(fù)。其字母表達(dá)式為:
若a>0,b>0,則>0;若a<0,b<0,則>0;
若a>0,b<0,則<0;若a<0,b>0,則<0.
反之:若>0,則 或 ,
(1)若<0,則___或___.
(2)根據(jù)上述規(guī)律,求不等式 >0的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F,M分別是正方形ABCD三邊的中點,CE與DF交于N,連接AM,AN,MN對于下列四個結(jié)論:①AM∥CE;②DF⊥CE;③AN=BC;④∠AND=∠CMN. 其中錯誤的是( )
A.①B.②C.③D.④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com