【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角,墻DF足夠長(zhǎng),墻DE長(zhǎng)為9米,現(xiàn)用20米長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD,點(diǎn)C在墻DF上,點(diǎn)A在墻DE上,(籬笆只圍AB,BC兩邊).
(Ⅰ)根據(jù)題意填表;
BC(m) | 1 | 3 | 5 | 7 |
矩形ABCD面積(m2) |
|
|
|
|
(Ⅱ)能夠圍成面積為100m2的矩形花園嗎?如能說(shuō)明圍法,如不能,說(shuō)明理由.
【答案】(Ⅰ)19;51;75;91(II)不能,理由見(jiàn)解析
【解析】
(I)利用矩形的面積=長(zhǎng)×寬,即可求出結(jié)論;
(II)設(shè)BC=xm,則AB=(20﹣x)m,利用矩形的面積公式結(jié)合矩形的花園的面積為100m2,即可得出關(guān)于x的一元二次方程,解之即可求出x的值,由x不超過(guò)9可得出不能圍成面積為100m2的矩形花園.
解:(I)1×(20﹣1)=19,3×(20﹣3)=51,5×(20﹣5)=75,7×(20﹣7)=91.
故答案為:19;51;75;91.
(II)不能,理由如下;
設(shè)BC=xm,則AB=(20﹣x)m,
依題意,得:x(20﹣x)=100,
整理,得:x2﹣20x+100=0,
解得:x1=x2=10.
∵10>9,
∴不能圍成面積為100m2的矩形花園.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩校分別有一男一女共4名教師報(bào)名到農(nóng)村中學(xué)支教.
(1)若從甲、乙兩校報(bào)名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是 .
(2)若從報(bào)名的4名教師中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名教師來(lái)自同一所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).三角形ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,以點(diǎn)A為圓心的弧EF與BC相切于格點(diǎn)D,分別交AB,AC于點(diǎn)E,F.
(1)直接寫(xiě)出三角形ABC邊長(zhǎng)AB= ;AC= ;BC= .
(2)求圖中由線段EB,BC,CF及弧FE所圍成的陰影部分的面積.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,∠BAC=90°,AB=AC=1,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE=45°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍,并求出當(dāng)BD為何值時(shí)AE取得最小值?
(3)在AC上是否存在點(diǎn)E,使△ADE是等腰三角形?若存在,求AE的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,點(diǎn)P在AD上,AB=2,AP=1.直角尺的直角頂點(diǎn)放在點(diǎn)P處,直角尺的兩邊分別交AB、BC于點(diǎn)E、F,連接EF(如圖1).
(1)當(dāng)點(diǎn)E與點(diǎn)B重合時(shí),點(diǎn)F恰好與點(diǎn)C重合(如圖2).
①求證:△APB∽△DCP;
②求PC、BC的長(zhǎng).
(2)探究:將直角尺從圖2中的位置開(kāi)始,繞點(diǎn)P順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E和點(diǎn)A重合時(shí)停止.在這個(gè)過(guò)程中(圖1是該過(guò)程的某個(gè)時(shí)刻),觀察、猜想并解答:
① tan∠PEF的值是否發(fā)生變化?請(qǐng)說(shuō)明理由.
② 設(shè)AE=x,當(dāng)△PBF是等腰三角形時(shí),請(qǐng)直接寫(xiě)出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小賢與小杰在探究某類二次函數(shù)問(wèn)題時(shí),經(jīng)歷了如下過(guò)程:
求解體驗(yàn):
(1)已知拋物線y=﹣x2+bx﹣3經(jīng)過(guò)點(diǎn)(﹣1,0),則b= ,頂點(diǎn)坐標(biāo) ,該拋物線關(guān)于點(diǎn)(0,1)成中心對(duì)稱的拋物線的表達(dá)式是 .
抽象感悟:
我們定義:對(duì)于拋物線y=ax2+bx+c(a≠0),以y軸上的點(diǎn)M(0,m)為中心,作該拋物線關(guān)于點(diǎn)M對(duì)稱的拋物線y',則我們又稱拋物線y'為拋物線y的“衍生拋物線”,點(diǎn)M為“衍生中心”.
(2)已知拋物線y=﹣x2﹣2x+5關(guān)于點(diǎn)(0,m)的衍生拋物線為y',若這兩條拋物線有交點(diǎn),求m的取值范圍.
問(wèn)題解決:
(3)已知拋物線y=ax2+2ax﹣b(a≠0)若拋物線y的衍生拋物線為y'=bx2﹣2bx+a2(b≠0),兩拋物線有兩個(gè)交點(diǎn),且恰好是它們的頂點(diǎn),求a,b的值及衍生中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C為△ABD外接圓上的一動(dòng)點(diǎn)(點(diǎn)C不在上,且不與點(diǎn)B,D重合),∠ACB=∠ABD=45°.
(1)求證:BD是該外接圓的直徑;
(2)連結(jié)CD,求證:AC=BC+CD;
(3)若△ABC關(guān)于直線AB的對(duì)稱圖形為△ABM,連接DM,試探究,三者之間滿足的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>
(1)(x+6)2=51
(2)x2﹣2x=2x﹣1
(3)x2﹣x=2
(4)x(x﹣7)=8(7﹣x)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com