【題目】如圖,四邊形不平行,為四邊形的對(duì)角線,分別是的中點(diǎn)下列結(jié)論:①;②四邊形是矩形;③平分;⑤四邊形是菱形.其中正確的個(gè)數(shù)是 ( )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

【答案】C

【解析】

先根據(jù)三角形中位線定理,得出EF=FG=GH=HE,進(jìn)而得到四邊形EFGH是菱形,據(jù)此可判斷結(jié)論是否正確,最后取AB的中點(diǎn)P,連接PE,PG,根據(jù)三角形三邊關(guān)系以及三角形中位線定理,即可得出

解:∵EF分別是BD,BC的中點(diǎn),

EF是△BCD的中位線,

EF=CD,

同理可得,GH=CD,FG=ABEH=AB,

又∵AB=CD,

EF=FG=GH=HE

∴四邊形EFGH是菱形,故⑤正確,②錯(cuò)誤,

EGFHHF平分∠EHG,故①、③正確,

如圖所示,取AB的中點(diǎn)P,連接PE,PG

EBD的中點(diǎn),GAC的中點(diǎn),

PE是△ABD的中位線,PG是△ABC的中位線,

PE=AD,PG=BC,PEAD,PGBC,

ADBC不平行,

PEPG不平行,

∴△PEG中,EGPGPE,

EGBCAD,

EGBCAD),故④錯(cuò)誤.

綜上所述,正確的有①③⑤.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課堂上,數(shù)學(xué)老師提出了如下問題:

如圖1,若線段AD為△ABC的角平分線,請(qǐng)問一定成立嗎?

小明和小芳分別作了如下探究:

小明發(fā)現(xiàn):如圖2,當(dāng)△ABC為直角三角形時(shí),且∠C=90°,∠CAB=60°時(shí),結(jié)論成立;

小芳發(fā)現(xiàn):如圖3,當(dāng)△ABC為任意三角形時(shí),過點(diǎn)CAB的平行線,交AD的延長(zhǎng)線于點(diǎn)E,利用此圖可以證明成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)直角三角形紙片,∠C=90°,AB=13cm,BC=5cm,將其折疊,使點(diǎn)C落在斜邊上的點(diǎn)C′處,折痕為BD(如圖),求DC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將矩形ABCD沿對(duì)角線AC剪開,再把△ACD沿CA方向平移得到△A1C1D1,連結(jié)AD1、BC1已知∠ACB=30°,AB=1,

(1)求證:△A1AD1≌△CC1B;

(2)當(dāng)CC1=1時(shí),求證:四邊形ABC1D1是菱形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角三角形中,平分于點(diǎn),平分于點(diǎn)、相交于點(diǎn),過點(diǎn),過點(diǎn)于點(diǎn).下列結(jié)論:①;②;③平分;④.其中正確的個(gè)數(shù)是(

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,的平分線與外角的平分線所在的直線交于點(diǎn).

(1)如圖1,若,求的度數(shù);

(2)如圖2,把沿翻折,點(diǎn)落在處.

①當(dāng)時(shí),求的度數(shù);②試確定的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,過點(diǎn)的直線邊上一點(diǎn),過點(diǎn),交直線垂足為,連接

(1)求證:

(2)當(dāng)中點(diǎn)時(shí),四邊形是什么特殊四邊形?說(shuō)明你的理由;

(3)若中點(diǎn),則當(dāng)的大小滿足什么條件時(shí),四邊形是正方形?請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平分,平分交于,若,則的度數(shù)為_________.(用表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AB=6cmBC=12cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB邊向點(diǎn)B以每秒1cm的速度移動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿BC邊向點(diǎn)C以每秒2cm的速度移動(dòng)P、Q兩點(diǎn)在分別到達(dá)BC兩點(diǎn)后就停止移動(dòng),設(shè)兩點(diǎn)移動(dòng)的時(shí)間為t秒,回答下列問題:

1)如圖1,當(dāng)t為幾秒時(shí),PBQ的面積等于5cm2?

2)如圖2,當(dāng)t=秒時(shí),試判斷DPQ的形狀,并說(shuō)明理由;

3)如圖3,以Q為圓心,PQ為半徑作⊙Q

①在運(yùn)動(dòng)過程中,是否存在這樣的t值,使⊙Q正好與四邊形DPQC的一邊(或邊所在的直線)相切?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由;

②若⊙Q與四邊形DPQC有三個(gè)公共點(diǎn),請(qǐng)直接寫出t的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案