【題目】在第1個△ABA1中,∠B=20°,AB=A1B,在A1B上取一點C,延長AA1A2使得A1A2=A1C;在A2C上取一點D,延長A1A2A3,使得A2A3=A2D;…,按此做法進(jìn)行下去,第n個三角形的以An為頂點的內(nèi)角的度數(shù)為______

【答案】n180°

【解析】

先根據(jù)等腰三角形的性質(zhì)求出∠BA1A的度數(shù),再根據(jù)三角形外角的性質(zhì)及等腰三角形的性質(zhì)分別求出∠CA2A1,DA3A2及∠EA4A3的度數(shù),找出規(guī)律即可得出第n個三角形的以An為頂點的內(nèi)角的度數(shù).

∵在ABA1,B=20°,AB=A1B,

∴∠BA1A===80°,

A1A2=A1C,BA1AA1A2C的外角,

∴∠CA2A1=BA1A=×80°=40°;

同理可得,

DA3A2=20°,EA4A3=10°,

∴第n個三角形的以An為頂點的內(nèi)角的度數(shù)=(n180°.

故答案為(n180°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:射線OP就是∠BOA的角平分線.他這樣做的依據(jù)是( 。

A. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上

B. 角平分線上的點到這個角兩邊的距離相等

C. 三角形三條角平分線的交點到三條邊的距離相等

D. 三角形三條垂直平分線的交點到三個定點的距離相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,過點A作AE⊥BC于點E,AF⊥DC于點F,AE=AF.
(1)求證:四邊形ABCD是菱形;
(2)若∠EAF=60°,CF=2,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在探索“尺規(guī)三等分角”這個數(shù)學(xué)名題的過程中,曾利用了如圖,該圖中,四邊形ABCD是矩形,E是BA延長線上一點,F(xiàn)是CE上一點,∠ACF=∠AFC,∠FAE=∠FEA。若∠ACB=21°,則∠ECD的度數(shù)是( )

A.7°
B.21°
C.23°
D.24°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在△ABC中,∠ACB=90°,CD為高,且CD、CE三等分∠ACB.

(1)求∠B的度數(shù).

(2)求證:CE是AB邊上的中線,且

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C測得教學(xué)樓頂總D的仰角為18°,教學(xué)樓底部B的俯角為20°,量得實驗樓與教學(xué)樓之間的距離AB=30m.
(結(jié)果精確到0.1m。參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)

(1)求∠BCD的度數(shù).
(2)求教學(xué)樓的高BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.

(1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°,
①若AB=CD=1,AB//CD,求對角線BD的長.
②若AC⊥BD,求證:AD=CD.
(2)如圖2,在矩形ABCD中,AB=5,BC=9,點P是對角線BD上一點,且BP=2PD,過點P作直線分別交邊AD,BC于點E,F(xiàn),使四邊形ABFE是等腰直角四邊形.求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小組在“用頻率估計概率”的實驗中,統(tǒng)計了某種結(jié)果出現(xiàn)的頻率,繪制了如圖所示的折線圖,那么符合這一結(jié)果的實驗最有可能的是(
A.袋子中有1個紅球和2個黃球,它們只有顏色上的區(qū)別,從中隨機(jī)地取出一個球是黃球
B.擲一個質(zhì)地均勻的正六面體骰子,落地時面朝上的點數(shù)是6
C.在“石頭、剪刀、布”的游戲中,小明隨機(jī)出的是“剪刀”
D.擲一枚質(zhì)地均勻的硬幣,落地時結(jié)果是“正面向上”

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠E=50°,BAC=50°,D=110°,求∠ABD的度數(shù).

請完善解答過程,并在括號內(nèi)填寫相應(yīng)的理論依據(jù).

解:∵∠E=50°,BAC=50°,(已知)

∴∠E=   (等量代換)

      .(   

∴∠ABD+D=180°.(   

∴∠D=110°,(已知)

∴∠ABD=70°.(等式的性質(zhì))

查看答案和解析>>

同步練習(xí)冊答案