【題目】如圖,在平行四邊形ABCD,∠B=90°,AD=9cm,AB=4cm,延長(zhǎng)BC到點(diǎn)E,使CE=3cm,連接DE.若動(dòng)點(diǎn)PA點(diǎn)出發(fā),以每秒2cm的速度沿線段AD運(yùn)動(dòng);動(dòng)點(diǎn)QE點(diǎn)出發(fā)以每秒3cm的速度沿EBB點(diǎn)運(yùn)動(dòng),當(dāng)點(diǎn)P、Q有一個(gè)到位置時(shí),動(dòng)點(diǎn)P、Q同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P、Q同時(shí)出發(fā),并運(yùn)動(dòng)了t,回答下列問(wèn)題:

(1)DE的長(zhǎng)

(2)當(dāng)t為多少時(shí),四邊形PQED成為平行四邊形;

(3)請(qǐng)直接寫(xiě)出使得△DQE是等腰三角形時(shí)t的值

【答案】(1)5cm;(2);(3)t的值為2

【解析】分析:(1)根據(jù)平行四邊形的性質(zhì)可得ABCD, 利用兩直線平行同位角相等可得

B=DCE=90°,再根據(jù)勾股定理即可求出DE,(2)根據(jù)一組對(duì)邊平行且相等的四邊形是平行四邊形可使PD=QE,即可得9-2t=3t,解得t=.

(3)根據(jù)等腰三角形的性質(zhì)分類討論, E為圓心ED為半徑畫(huà)圓交BE于一點(diǎn)為點(diǎn)Q,根據(jù)ED=EQ,可得5=3t,即可求解, ②D為圓心ED為半徑畫(huà)圓交BE于一點(diǎn)為點(diǎn)Q,根據(jù)等腰三角形性質(zhì)可得CE=,可得3=t,即可求解,③作線段DE的垂直平分線,可得DQ=EQ,在直角三角形DCQ,由勾股定理可得:,可得,解方程即可求解.

詳解:(1)∵四邊形ABCD是平行四邊形,

AB=CD=4,ABCD,

∴∠B=DCE=90°,

RtDCE,DC=4,CE=3,

∴根據(jù)勾股定理,DE=5cm,

(2),

根據(jù)題意,AP=2t,PD=9-2t,EQ=3t,

∵四邊形PQED是平行四邊形,

PD=QE,

9-2t=3t ,

t=.

(3)可以使得DQE是等腰三角形,此時(shí)t的值為2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在等邊△ABC中,點(diǎn)E、D分別是AC,BC邊的中點(diǎn),點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn),連接PE,PD,PC,DE.設(shè)AP=x,圖1中某條線段的長(zhǎng)為y,若表示y與x的函數(shù)關(guān)系的圖像大致如圖2所示,則這條線段可能是圖1中的( )

A.線段PD
B.線段PC
C.線段PE
D.線段DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算與解不等式組
(1)計(jì)算:|﹣2 |﹣4sin45°+(3﹣π)°﹣( 2;
(2)解不等式組: ,并在數(shù)軸上表示它的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a<0,c>0)與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其對(duì)稱軸l為x=﹣1,直線y=kx+m經(jīng)過(guò)A,C兩點(diǎn),與拋物線的對(duì)稱軸l交于點(diǎn)D,且AD=2CD,連接BC,BD.

(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:a=﹣k;
(3)若△BCD是直角三角形,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:正方形紙片ABCD的邊長(zhǎng)為4,將該正方形紙片沿EF折疊(E,F(xiàn)分別在AB,CD邊上),使點(diǎn)B落在AD邊上的點(diǎn)M處,點(diǎn)C落在點(diǎn)N處,MN與CD交于點(diǎn)P.

(1)如圖①,連接PE,若M是AD邊的中點(diǎn).
①寫(xiě)出圖中與△PMD相似的三角形.
②求△PMD的周長(zhǎng).
(2)如圖②,隨著落點(diǎn)M在AD邊上移動(dòng)(點(diǎn)M不與A、D重合),△PDM的周長(zhǎng)是否發(fā)生變化?請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)C是半徑為1的半圓弧AB的一個(gè)三等分點(diǎn),分別以弦AC、BC為直徑向外側(cè)作2個(gè)半圓,點(diǎn)D、E也分別是2半圓弧的三等分點(diǎn),再分別以弦AD、DC、CE、BE為直徑向外側(cè)作4個(gè)半圓.則圖中陰影部分(4個(gè)新月牙形)的面積和是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)EAH的中點(diǎn),點(diǎn)FGH的中點(diǎn),連接EF.則EF的最大值與最小值的差為( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人分別騎自行車和摩托車從A地到B地,兩人所行駛的路程與時(shí)間的關(guān)系如圖所示,下面的四個(gè)說(shuō)法:

甲比乙早出發(fā)了3小時(shí);乙比甲早到3小時(shí);甲、乙的速度比是5:6;乙出發(fā)2小時(shí)追上了甲.

其中正確的個(gè)數(shù)是  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知BD、CE是△ABC的兩條高,直線BD、CE相交于點(diǎn)H.

(1)如圖,①在圖中找出與∠DBA相等的角,并說(shuō)明理由;

②若∠BAC=100°,求∠DHE的度數(shù);

(2)若△ABC,∠A=50°,直接寫(xiě)出∠DHE的度數(shù)是

查看答案和解析>>

同步練習(xí)冊(cè)答案