【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1,下列結(jié)論:①abc<0;②9a+3b+c=0;③4ac﹣b2<2a;④2b=3a.
其中正確的結(jié)論是( )
A.①③
B.②④
C.①④
D.②③
【答案】D
【解析】①∵拋物線開口向上,對(duì)稱軸為直線x=1,與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),
∴a>0,﹣ =1,c<0,
∴b=﹣2a<0,
∴abc>0,結(jié)論①錯(cuò)誤;②∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于點(diǎn)A(﹣1,0),對(duì)稱軸為直線x=1,
∴二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的另一個(gè)交點(diǎn)為(3,0),
∴9a+3b+c=0,結(jié)論②正確;③∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸的交點(diǎn)B在(0,﹣2)和(0,﹣1)之間(不包括這兩點(diǎn)),
∴拋物線頂點(diǎn)縱坐標(biāo) <﹣1,
∵a>0,
∴4ac﹣b2<﹣4a<2a,結(jié)論③正確;④∵拋物線對(duì)稱軸為直線x=1,
∴﹣ =1,b=﹣2a,結(jié)論④錯(cuò)誤.
綜上所述,正確的結(jié)論有:②③.
所以答案是:D.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)和二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減;二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】己知:如圖,E、F分別是ABCD的AD、BC邊上的點(diǎn),且AE=CF.
(1)求證:△ABE≌△CDF;
(2)若M、N分別是BE、DF的中點(diǎn),連接MF、EN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明今年五一節(jié)去三峽廣場(chǎng)逛水果超市,他分兩次購(gòu)進(jìn)了、兩種不同單價(jià)的水果.第一次購(gòu)買種水果的數(shù)量比種水果的數(shù)量多50%,第二次購(gòu)買種水果的數(shù)量比第一次購(gòu)買種水果的數(shù)量少60%,結(jié)果第二次購(gòu)買水果的總數(shù)量比第一次購(gòu)買水果的總數(shù)量多20%,且第二次購(gòu)買、水果的總費(fèi)用比第一次購(gòu)買、水果的總費(fèi)用少10%(兩次購(gòu)買中、兩種水果的單價(jià)不變),則種水果的單價(jià)與種水果的單價(jià)的比值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解本校九年級(jí)男生“引體向上”項(xiàng)目的訓(xùn)練情況,隨機(jī)抽取該年級(jí)部分男生進(jìn)行了一次測(cè)試(滿分15分,成績(jī)均記為整數(shù)分),并按測(cè)試成績(jī)(單位:分)分成四類:A類(12≤m≤15),B類(9≤m≤11),C類(6≤m≤8),D類(m≤5)繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:
(1)本次抽取樣本容量為 , 扇形統(tǒng)計(jì)圖中A類所對(duì)的圓心角是度;
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(3)若該校九年級(jí)男生有300名,請(qǐng)估計(jì)該校九年級(jí)男生“引體向上”項(xiàng)目成績(jī)?yōu)镃類的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣ x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣ x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)燃一根蠟燭后,蠟燭的高度h(厘米)與燃燒時(shí)間t(分)之間的關(guān)系如下表:
t/分 | 0 | 2 | 4 | 6 | 8 | 10 |
h/厘米 | 30 | 29 | 28 | 27 | 26 | 25 |
寫出蠟燭的高度h(厘米)與燃燒時(shí)間t(分)之間的關(guān)系式_____;這根蠟燭最多能燃燒的時(shí)間為_____分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加快建設(shè)經(jīng)濟(jì)強(qiáng)、環(huán)境美、后勁足、群眾富的實(shí)力微山,魅力微山,活力微山,幸福微山;聚力脫貧攻堅(jiān),全面完成脫貧任務(wù),某鄉(xiāng)鎮(zhèn)特制定一系列幫扶甲、乙兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送1225箱魚苗到甲、乙兩村養(yǎng)殖.若用大、小貨車共20輛,則恰好能一次性運(yùn)完這批魚苗,已知這兩種大小貨車的載貨能力和其運(yùn)往甲、乙兩村的運(yùn)費(fèi)如表:
車型 | 載貨能力(箱/輛) | 運(yùn)費(fèi) | |
甲村(元/輛) | 乙村(元/輛) | ||
大貨車 | 70 | 800 | 900 |
小貨車 | 35 | 400 | 600 |
(1)求這20輛車中大、小貨車各多少輛?
(2)現(xiàn)安排其中16輛貨車前往甲村,其余貨車前往乙村,設(shè)前往甲村的大貨車為x輛,前往甲、乙兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式及x的取值范圍;
(3)在(2)的條件下,若運(yùn)往甲村的魚苗不少于980箱,請(qǐng)你寫出使總費(fèi)用最少的貨車調(diào)配方案,并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,則∠BED的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB交CD于O,OE⊥AB.
(1)若∠EOD=20°,求∠AOC的度數(shù);
(2)若∠AOC:∠BOC=1:2,求∠EOD的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com