【題目】在平面直角坐標(biāo)系xoy中,對于某點(diǎn)P(P不是原點(diǎn)),稱以點(diǎn)P為圓心,長為半徑圓為點(diǎn)P的半長圓;對于點(diǎn)Q,若將點(diǎn)P的半長圓繞原點(diǎn)旋轉(zhuǎn),能夠使得點(diǎn)Q位于點(diǎn)P的半長圓內(nèi)部或圓上,則稱點(diǎn)Q能被點(diǎn)P半長捕獲(或點(diǎn)P能半長捕獲點(diǎn)Q).
(1)在平面直角坐標(biāo)系xoy中,點(diǎn)M(2,0),則點(diǎn)M的半長圓的面積為 ;下列各點(diǎn),能被點(diǎn)M半長捕獲的點(diǎn)有 ;
(2)已知點(diǎn),
①點(diǎn)N(0,n),當(dāng)t=1時,線段EF上的所有點(diǎn)均可以被點(diǎn)N半長捕獲,求n的取值范圍;
②若對于平面上的任意點(diǎn)(原點(diǎn)除外)都不能半長捕獲線段EF上的所有點(diǎn),直接寫出t的取值范圍.
【答案】(1),B點(diǎn)和C點(diǎn);(2)①或;②.
【解析】
(1)根據(jù)M點(diǎn)坐標(biāo),先求出M的半長圓的半徑,由此可求面積,再根據(jù)題述定義,畫出大致圖,由圖可知被點(diǎn)M半長捕獲的點(diǎn)到原點(diǎn)的距離介于1到3之間,分別計算出各點(diǎn)到圓心的距離,即可得出被點(diǎn)M半長捕獲的點(diǎn);
(2)①當(dāng)n>0時,根據(jù)題述定義可得被點(diǎn)N半長捕獲的點(diǎn)到原點(diǎn)的距離介于到之間,由此可列出不等式組,即可求得n的取值范圍,同理可求得n<0時,n的取值范圍;
②設(shè)半長圓的半徑為r,則被點(diǎn)N半長捕獲的點(diǎn)到原點(diǎn)的距離介于r到3r之間,根據(jù)題意,可列出關(guān)于r的不等式組,且該不等式組無解,即可求得t的取值范圍.
解:(1)如下圖,
∵M(2,0),
∴過M點(diǎn)的半長圓半徑為1,即HM=MF=1,
∴OH=1,OF=3,,
∴被點(diǎn)M半長捕獲的點(diǎn)到原點(diǎn)的距離介于1到3之間,
又∵,
∴,
所以,能被點(diǎn)M半長捕獲的點(diǎn)有B點(diǎn)和C點(diǎn).
故答案為:,B點(diǎn)和C點(diǎn);
(2)①根據(jù)點(diǎn)N(0,n),
若n>0,則半長圓的半徑為,
此時,被點(diǎn)N半長捕獲的點(diǎn)到原點(diǎn)的距離介于到之間,
∵且,
∴,
又∵線段EF上的所有點(diǎn)均可以被點(diǎn)N半長捕獲,
∴,解得,
若n<0,同理可得,
故或;
②∵,
∴,
設(shè)半長圓的半徑為r,
則被點(diǎn)N半長捕獲的點(diǎn)到原點(diǎn)的距離介于r到3r之間,
若對于平面上的任意點(diǎn)(原點(diǎn)除外)都不能半長捕獲線段EF上的所有點(diǎn),則
關(guān)于r的不等式組 無解,
即,解得,
又∵,
∴,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),對稱軸與軸交于點(diǎn),點(diǎn),點(diǎn),點(diǎn)是平面內(nèi)一動點(diǎn),且滿足是線段的中點(diǎn),連結(jié).則線段的最大值是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作為國家級開發(fā)區(qū)的兩江新區(qū),大小公園星羅棋布,稱為“百園之城”.該區(qū)2018年綠地總面積為2500萬平方米,2020年綠地總面積將比2018年增加3500萬平方米,人口比2018年增加50萬人.這樣,2020年該區(qū)人均綠地面積是2018年人均綠地面積的2倍.
(1)求2020年兩江新區(qū)的人口數(shù)量;
(2)2020年起,為了更好地建設(shè)“一半山水一半城”的美麗新區(qū),吸引外來人才落戶兩江新區(qū),新區(qū)管委會在增加綠地面積的同時大力擴(kuò)展配套水域面積.根據(jù)調(diào)查,2020年新區(qū)的配套水域面積為人均4平方米.在2020年的基礎(chǔ)上,如果人均綠地每增加1平方米,人均配套水域?qū)⒃黾?/span>平方米,人口也將隨之增加5萬.這樣,兩江新區(qū)2022年的綠地總面積與配套水域總面積要在2020年的基礎(chǔ)上增加75%,那么2022年人均綠地面積要比2020年增加多少平方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,以點(diǎn)為圓心,以為半徑作優(yōu)弧,交于點(diǎn),交于點(diǎn).點(diǎn)在優(yōu)弧上從點(diǎn)開始移動,到達(dá)點(diǎn)時停止,連接.
(1)當(dāng)時,判斷與優(yōu)弧的位置關(guān)系,并加以證明;
(2)當(dāng)時,求點(diǎn)在優(yōu)弧上移動的路線長及線段的長.
(3)連接,設(shè)的面積為,直接寫出的取值范圍.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一個傾斜角為的斜坡的橫截面,.斜坡頂端B與地面的距離為3米.為了對這個斜坡上的綠地進(jìn)行噴灌,在斜坡底端安裝了一個噴頭A,噴頭A噴出的水珠在空中走過的曲線可以看作拋物線的一部分.設(shè)噴出水珠的豎直高度為y(單位:米)(水珠的豎直高度是指水珠與地面的距離),水珠與噴頭A的水平距離為x(單位:米),y與x之間近似滿足函數(shù)關(guān)系(a,b是常數(shù),),圖2記錄了x與y的相關(guān)數(shù)據(jù).
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)斜坡上有一棵高1.8米的樹,它與噴頭A的水平距離為2米,通過計算判斷從A噴出的水珠能否越過這棵樹.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】科技發(fā)展,社會進(jìn)步,中國已進(jìn)入特色社會主義新時代,為實現(xiàn)“兩個一百年”奮斗目標(biāo)和中華民族偉大復(fù)興的中國夢,需要人人奮斗,青少年時期是良好品格形成和知識積累的黃金時期,為此,大數(shù)據(jù)平臺針對部分中學(xué)生品格表現(xiàn)和學(xué)習(xí)狀況進(jìn)行調(diào)查統(tǒng)計繪制如下統(tǒng)計圖表,請根據(jù)圖中提供的信息解決下列問題,類別:品格健全,成績優(yōu)異;尊敬師長,積極進(jìn);自控力差,被動學(xué)習(xí);沉迷奢玩,消極自卑.
(1)本次調(diào)查被抽取的樣本容量為 ;
(2)“自控力差,被動學(xué)習(xí)”的同學(xué)有 人,并補(bǔ)全條形統(tǒng)計圖;
(3)樣本中類所在扇形的圓心角為 度;
(4)東至縣城內(nèi)某中學(xué)有在校學(xué)生3330人,請估算該校類學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知矩形ABCD,AB=4,AD=3,點(diǎn)E為邊DC上不與端點(diǎn)重合的一個動點(diǎn),連接BE,將BCE沿BE翻折得到BEF,連接AF并延長交CD于點(diǎn)G,則線段CG的最大值是( )
A.1B.1.5C.4-D.4-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②都是的正方形網(wǎng)格,每個小正方形的頂點(diǎn)叫做格點(diǎn).的頂點(diǎn)都在格點(diǎn)上,僅用無刻度的直尺,分別按下列要求畫圖,保留作圖痕跡.
(1)在圖①中過點(diǎn)作面積兩等分的射線.
(2)在圖②中過點(diǎn)作所有將面積分成1:2的兩部分的射線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是的角平分線.
(1)請在上確定點(diǎn),使得;(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com