【題目】我們已經(jīng)學習過“乘方”和“開方”運算,下面給同學們介紹一種新的運算,即對數(shù)運算.

定義:如果ab=N(a>0,a≠1,N>0),則b叫做以a為底N的對數(shù),記作logaN=b.

例如:因為,所以;因為,所以.

(1)填空: _____, ________.

(2)如果,求m的值.

(3)對于“對數(shù)”運算,小明同學認為有“”,他的說法正確嗎?如果正確,請給出證明過程;如果不正確,請說明理由,并加以改正。

【答案】 (1)1, 4;(2)10;(3)不正確,logaMN=logaM+logaN(a>0,a≠1,M>0,N>0)

【解析】試題分析:(1)利用閱讀材料中的方法計算各項即可得到結果;

(2)根據(jù)新運算的定義將已知轉化為23m-2,然后解方程即可得出答案;

3axM,ayN,根據(jù)同底數(shù)冪的乘法的運算性質(zhì)和新運算的定義整理即可得出答案.

試題解析:

解:1616,

log661;

∵3481

∴l(xiāng)og3814

故答案為:1,4;

2∵log2(m2)3,

∴23m2,

解得:m10;

3)不正確,理由如下:

axM,ayN,

logaMx,logaNya0,a≠1,MN均為正數(shù)),

axayaxy,

axy MN

logaMNxy,

logaMNlogaMlogaN

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D是BC邊上的一點,過A點作BC的平行線,截取AE=BD,連結EB,連結EC交AD于點F.
(1)證明:當點F是AD的中點時,點D是BC的中點;
(2)證明:當點D是AB的中垂線與BC的交點時,四邊形AEBD是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的兩條對角線的一個交角為60°,兩條對角線的長度的和為20cm,則這個矩形的一條較短邊的長度為( 。

A.10cm
B.8cm
C.6cm
D.5cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義一種關于“⊙”的新運算,觀察下列式子:
1⊙3=1×4+3=7; 3⊙(﹣1)=3×4+(﹣1)=11;
5⊙4=5×4+4=24; 4⊙(﹣3)=4×4+(﹣3)=13.
請你想一想:5⊙(﹣6)=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列因式分解錯誤的是( 。
A.2a﹣2b=2(a﹣b)
B.x2﹣9=(x+3)(x﹣3)
C.a2+4a﹣4=(a+2)2
D.﹣x2﹣x+2=﹣(x﹣1)(x+2)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明拿兩個大小不等直角三角板作拼圖,如圖①小三角板的斜邊與大三角板直角邊正好重合,已知: AD=1,∠B=∠ ACD=30°,

(1)A B的長=__________;四邊形ABCD的面積=___________(直接填空);

(2)如圖②,若小明將小三角板ACD沿著射線AB方向平移,設平移的距離為m(平移距離指點A沿AB方向所經(jīng)過的線段長度).當點D平移到線段大三角板ABC的邊上時,直接寫出相應的m的值.

(3)如圖③,小明將小三角板ACD繞點A逆時針旋轉一個角α(0°<α<180°),記旋轉中的△ACD為△AC′D′,在旋轉過程中,設C′D′所在的直線與直線BC交于點P,與直線AB交于點Q.是否存在這樣的P、Q兩點,使△BPQ為等腰三角形?若存在,請直接求出此時D’Q的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將直線y=2x+4向下平移3個單位,則得到的新直線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F,連接BD.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,求證:四邊形DFBE是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:﹣3﹣|﹣2|

查看答案和解析>>

同步練習冊答案