【題目】某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:
該商場計劃購進兩種手機若干部,共需15.5萬元,預(yù)計全部銷售后可獲毛利潤共2.1萬元.
(毛利潤=(售價﹣進價)×銷售量)
(1)該商場計劃購進甲、乙兩種手機各多少部?
(2) 通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.
【答案】(1)甲種手機購20部,乙種手機購30部.(2)最大利潤為24500元.
【解析】
試題分析:(1)設(shè)甲種手機購進x部,則乙種手機購進(155000-4000x)÷2500部,根據(jù)總利潤不低于2萬元建立不等式求出其解即可;
(2)設(shè)甲種手機減少m部,毛利潤為y元,先求出m的取值范圍,根據(jù)利潤=售價-進價建立函數(shù)解析式即可.
試題解析:(1)設(shè)甲種手機購進x部,由題意,得
300x+500×≥20000,
解得:x≤22.
∵兩種手機數(shù)量都為整數(shù),
∴x的最大值為20.
∴乙種手機應(yīng)該購進(155000-4000×20)÷2500=30部,
∴要想盡可能多的購進甲種手機,應(yīng)該安排怎樣的進貨方案是:甲種手機購20部,乙種手機購30部.
(2)設(shè)甲種手機減少m部,毛利潤為y元,由題意,得
4000(20-m)+2500(30+2m)≤160000,
解得:m≤5.
y=300(20-m)+500(30+2m),
y=700m+21000.
∴k=700>0,
∴y隨m的增大而增大,
∴m=5時,最大利潤為24500元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級一班和二班各推選名同學(xué)進行投籃比賽,按照比賽規(guī)則,每人各投了個球,兩個班選手的進球數(shù)統(tǒng)計如下表,請根據(jù)表中數(shù)據(jù)回答問題.
進球數(shù)(個) | ||||||
一班人數(shù)(人) | ||||||
二班人數(shù)(人) |
填表;
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
一班 | 2.6 | |||
二班 | 7 | 7 | 7 |
如果要從這兩個班中選出一個班代表級部參加學(xué)校的投籃比賽,爭取奪得總進球數(shù)團體第一名,你認為應(yīng)該選擇哪個班?如果要爭取個人進球數(shù)進入學(xué)校前三名,你認為應(yīng)該選擇哪個班?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知過點B(1,0)的直線與直線:相交于點P(-1,a).且l1與y軸相交于C點,l2與x軸相交于A點.
(1)求直線的解析式;
(2)求四邊形的面積;
(3)若點Q是x軸上一動點,連接PQ、CQ,當(dāng)△QPC周長最小時,求點Q坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,EF與AB,CD分別交于點G,H,∠CHG的平分線HM交AB于點M,若∠EGB=50°,則∠GMH的度數(shù)為( )
A. 50°B. 55°C. 60°D. 65°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中, ∠B=90°,DE//AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.
(1)求證:△ACD是等腰三角形;
(2)若AB=4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,A點坐標(biāo)為(-2,2).
⑴如圖⑴,在△ABO為等腰直角三角形,求B點坐標(biāo).
⑵如圖⑴,在⑴的條件下,分別以AB和OB為邊作等邊△ABC和等邊△OBD,連結(jié)OC,求∠COB的度數(shù).
⑶如圖⑵,過點A作AM⊥y軸于點M,點E為x軸正半軸上一點,K為ME延長線上一點,以MK為直角邊作等腰直角三角形MKJ,∠MKJ=90°,過點A作AN⊥x軸交MJ于點N,連結(jié)EN.則①的值不變;②的值不變,其中有且只有一個結(jié)論正確,請判斷出正確的結(jié)論,并加以證明和求出其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,AB=6,AC=3,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線y=﹣x+b與x軸、y軸相交于A、B兩點,動點C(m,0)在線段OA上,將線段CB繞著點C順時針旋轉(zhuǎn)90°得到CD,此時點D恰好落在直線AB上,過點D作DE⊥x軸于點E.
(1)求m和b的數(shù)量關(guān)系;
(2)當(dāng)m=1時,如圖2,將△BCD沿x軸正方向平移得△B′C′D′,當(dāng)直線B′C′經(jīng)過點D時,求點B′的坐標(biāo)及△BCD平移的距離;
(3)在(2)的條件下,直線AB上是否存在一點P,以P、C、D為頂點的三角形是等腰直角三角形?若存在,寫出滿足條件的P點坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,表中給出的是某月的月歷,任意選取“”型框中的個數(shù)(如陰影部分所示).請你運用所學(xué)的數(shù)學(xué)知識來研究,則這個數(shù)的和不可能是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com