【題目】如圖,BD是矩形ABCD的一條對(duì)角線.
(1)作BD的垂直平分線EF,分別交AD、BC于點(diǎn)E、F,垂足為點(diǎn)O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);
(2)求證:DE=BF.

【答案】
(1)解:答題如圖:


(2)證明:∵四邊形ABCD為矩形,

∴AD∥BC,

∴∠ADB=∠CBD,

∵EF垂直平分線段BD,

∴BO=DO,

在△DEO和三角形BFO中,

∴△DEO≌△BFO(ASA),

∴DE=BF.


【解析】(1)分別以B、D為圓心,以大于 BD的長(zhǎng)為半徑四弧交于兩點(diǎn),過兩點(diǎn)作直線即可得到線段BD的垂直平分線;(2)利用垂直平分線證得△DEO≌△BFO即可證得結(jié)論.
【考點(diǎn)精析】通過靈活運(yùn)用線段垂直平分線的性質(zhì)和矩形的性質(zhì),掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,下列圖形都是由面積為1的正方形按一定的規(guī)律組成,其中,圖1中面積為1 的正方形有9個(gè),圖2中面積為1的正方形有14個(gè),,按此規(guī)律,圖9中面積為1的正方形的個(gè)數(shù)為(

……

A. 49 B. 45 C. 44 D. 40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是邊AC上一點(diǎn)(不包括端點(diǎn)A、C),過點(diǎn)P作PE⊥BC于點(diǎn)E,過點(diǎn)E作EF∥AC,交AB于點(diǎn)F.設(shè)PC=x,
PE=y.

(1)求y與x的函數(shù)關(guān)系式;
(2)是否存在點(diǎn)P使△PEF是Rt△?若存在,求此時(shí)的x的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳。經(jīng)過測(cè)試:同時(shí)開放1個(gè)大餐廳和2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開放2個(gè)大餐廳和1個(gè)小餐廳,可供2280名學(xué)生就餐。

(1)1個(gè)大餐廳和1個(gè)小餐廳分別可供多少名學(xué)生就餐?

(2)若7個(gè)餐廳同時(shí)開放,能否供全校的5300名學(xué)生就餐?請(qǐng)說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們給出如下定義:如圖①,平面內(nèi)兩條直線、相交于點(diǎn)O,對(duì)于平面內(nèi)的任意一點(diǎn)M,若p、q分別是點(diǎn)M到直線的距離(P≥0,q≥0),稱有序非負(fù)實(shí)數(shù)對(duì)是點(diǎn)M的距離坐標(biāo)。

根據(jù)上述定義,請(qǐng)解答下列問題:

如圖②,平面直角坐標(biāo)系xoy內(nèi),直線的關(guān)系式為,直線的關(guān)系式為,M是平面直角坐標(biāo)系內(nèi)的點(diǎn)。

(1)若,求距離坐標(biāo)為時(shí),點(diǎn)M的坐標(biāo);

(2)若,且,利用圖②,在第一象限內(nèi),求距離坐標(biāo)為時(shí),點(diǎn)M的坐標(biāo);

(3)若,則坐標(biāo)平面內(nèi)距離坐標(biāo)為時(shí),點(diǎn)M可以有幾個(gè)位置?并用三角尺在圖③畫出符合條件的點(diǎn)M(簡(jiǎn)要說明畫法)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各組數(shù)中,把兩數(shù)相乘,積為1的是( )
A.2和-2
B.-2和
C.
D.和-

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸、軸交點(diǎn)分別為,另一直線經(jīng)過,且把分成兩部分.

(1)若被分成的兩部分面積相等,求的值.

(2)若被分成的兩部分面積之比為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,在平面直角坐標(biāo)系中,A(3,4),B(0,2).

(1)OAB繞O點(diǎn)旋轉(zhuǎn)180°得到OA1B1,請(qǐng)畫出OA1B1,并寫出A1,B1的坐標(biāo);

(2)判斷以A,B,A1,B1為頂點(diǎn)的四邊形的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,BF平分∠ABC,交AD于點(diǎn)F,CE平分∠BCD,交AD于點(diǎn)E,AB=6,EF=2,則BC長(zhǎng)為(
A.8
B.10
C.12
D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案