【題目】(2016云南省第18題)如圖,菱形ABCD的對角線AC與BD交于點O,∠ABC:∠BAD=1:2,BE∥AC,CE∥BD.
(1)求tan∠DBC的值;
(2)求證:四邊形OBEC是矩形.
【答案】(1)、;(2)、證明過程見解析.
【解析】
試題分析:(1)、由四邊形ABCD是菱形,得到對邊平行,且BD為角平分線,利用兩直線平行得到一對同旁內(nèi)角互補,根據(jù)已知角之比求出相應(yīng)度數(shù),進(jìn)而求出∠BDC度數(shù),即可求出tan∠DBC的值;(2)、由四邊形ABCD是菱形,得到對角線互相垂直,利用兩組對邊平行的四邊形是平行四邊形,再利用有一個角為直角的平行四邊形是矩形即可得證.
試題解析:(1)、∵四邊形ABCD是菱形, ∴AD∥BC,∠DBC=∠ABC, ∴∠ABC+∠BAD=180°,
∵∠ABC:∠BAD=1:2, ∴∠ABC=60°, ∴∠BDC=∠ABC=30°, 則tan∠DBC=tan30°=;
(2)、∵四邊形ABCD是菱形, ∴AC⊥BD,即∠BOC=90°, ∵BE∥AC,CE∥BD, ∴BE∥OC,CE∥OB,
∴四邊形OBEC是平行四邊形, 則四邊形OBEC是矩形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016山西省第22題)(本題12分)綜合與實踐
問題情境
在綜合與實踐課上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開展數(shù)學(xué)活動,如圖1,將一張菱形紙片ABCD()沿對角線AC剪開,得到和.
操作發(fā)現(xiàn)
(1)將圖1中的以A為旋轉(zhuǎn)中心,逆時針方向旋轉(zhuǎn)角,使 ,得到如圖2所示的,分別延長BC 和交于點E,則四邊形的狀是 ;
(2)創(chuàng)新小組將圖1中的以A為旋轉(zhuǎn)中心,按逆時針方向旋轉(zhuǎn)角,使,得到如圖3所
示的,連接DB,,得到四邊形,發(fā)現(xiàn)它是矩形.請你證明這個論;
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,量得圖3中BC=13cm,AC=10cm,然后提出一個問題:將沿著射線DB方向平移acm,得到,連接,,使四邊形恰好為正方形,求a的值.請你解答此問題;
(4)請你參照以上操作,將圖1中的在同一平面內(nèi)進(jìn)行一次平移,得到,在圖4中畫出平移后構(gòu)造出的新圖形,標(biāo)明字母,說明平移及構(gòu)圖方法,寫出你發(fā)現(xiàn)的結(jié)論,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,三角形ABC的頂點A(0,5),B(-2,2).
(1)根據(jù)A,B坐標(biāo)在網(wǎng)格中建立平面直角坐標(biāo)系,并寫出點C坐標(biāo):( );
(2)平移三角形ABC,使點C移動到點F(7,-4),畫出平移后的三角形DEF,其中點D與點A對應(yīng),點E與點B對應(yīng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016四川省樂山市第23題)如圖1,四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=.
(1)求CD邊的長;
(2)如圖2,將直線CD邊沿箭頭方向平移,交DA于點P,交CB于點Q (點Q運動到點B停止),設(shè)DP=x,四邊形PQCD的面積為,求與的函數(shù)關(guān)系式,并求出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)定義運算“★”,對于任意實數(shù)a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,則實數(shù)x的值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將二次函數(shù)y=x2﹣4的圖象先向右平移2個單位,再向上平移3個單位后得到的拋物線的函數(shù)表達(dá)式為( )
A.y=(x+2)2﹣7
B.y=(x﹣2)2﹣7
C.y=(x+2)2﹣1
D.y=(x﹣2)2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,∠A的平分線交DC于E,若∠DEA=30°,則∠B=( ).
A.100°
B.120°
C.135°
D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b(k≠0)的圖象與x軸交于(﹣5,0),則關(guān)于x的一元一次方程kx+b=0的解為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com