【題目】如圖,在三角形ABC中,AB=10,AC=BC=13,以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,直線DF⊥AC,于點(diǎn)F,交CB的延長(zhǎng)線于點(diǎn)E.

(1)求證:DF是⊙O的切線;

(2)求cos∠ADF的值.

【答案】(1)證明見(jiàn)解析;(2)

【解析】

(1)連接OD和CD,根據(jù)圓周角定理求出∠BDC=90°,根據(jù)等腰三角形的性質(zhì)求出AD=BD,根據(jù)三角形的中位線求出OD∥AC,求出OD⊥EF,根據(jù)切線的判定得出即可;

(2)根據(jù)余角的性質(zhì)得到∠ADF=∠ODC,等量代換得到∠ADF=∠ODC,根據(jù)勾股定理得到CD=12,根據(jù)三角函數(shù)的定義即可得到結(jié)論.

(1)證明:連接OD,CD,

∵BC為⊙O的直徑,

∴∠BDC=90°,即CD⊥AB,

∵AC=BC,AB=10,

∴AD=BD=5,

∵O為BC中點(diǎn),

∴OD∥AC,

∵DF⊥AC,

∴OD⊥EF,

∵OD過(guò)O,

∴直線DF是⊙O的切線;

(2)∵∠ADC=∠BDC=90°,∠ODF=90°,

∴∠ADF=∠ODC,

∴OD=OC,

∴∠ODC=∠OCD,

∴∠ADF=∠ODC,

∵BD=5,BC=13,

∴CD=12,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】疫情期間,附中初級(jí)老師們?yōu)榱私夂⒆觽冊(cè)诩颐恐荏w育鍛煉打卡情況,收集部分?jǐn)?shù)據(jù)并繪制了如下尚不完整的參與打卡人數(shù)與堅(jiān)持打卡天數(shù)的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:

通過(guò)分析上面個(gè)統(tǒng)計(jì)圖,制作如下表格:

統(tǒng)計(jì)量

平均數(shù)

中位數(shù)

眾數(shù)

天數(shù)

4.4

a

b

1)填空:_______,_______,并補(bǔ)全條形統(tǒng)計(jì)圖.

2)因?yàn)橐咔槠陂g,在家體育鍛煉條件受限,所以規(guī)定堅(jiān)持打卡不低于天即為合格.初級(jí)共有學(xué)生人,請(qǐng)你估計(jì)初級(jí)學(xué)生中體育鍛煉合格的人數(shù).

3)若統(tǒng)計(jì)時(shí)漏掉名學(xué)生,先將他的打卡天數(shù)和原統(tǒng)計(jì)的打卡天數(shù)合并成一組新數(shù)據(jù)后,發(fā)現(xiàn)平均數(shù)增大了,則漏掉的這名學(xué)生堅(jiān)持打卡天數(shù)最少是多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“世界讀書(shū)日”前夕,某校開(kāi)展了“讀書(shū)助我成長(zhǎng)”的閱讀活動(dòng).為了了解該校學(xué)生在此次活動(dòng)中課外閱讀書(shū)籍的數(shù)量情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,將收集到的數(shù)據(jù)進(jìn)行整理,繪制出兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖信息解決下列問(wèn)題:

1)求本次調(diào)查中共抽取的學(xué)生人數(shù);

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)在扇形統(tǒng)計(jì)圖中,閱讀本書(shū)籍的人數(shù)所在扇形的圓心角度數(shù)是   ;

4)若該校有名學(xué)生,估計(jì)該校在這次活動(dòng)中閱讀書(shū)籍的數(shù)量不低于本的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解密數(shù)學(xué)魔術(shù):魔術(shù)師請(qǐng)觀眾心想一個(gè)數(shù),然后將這個(gè)數(shù)按以下步驟操作:

魔術(shù)師能立刻說(shuō)出觀眾想的那個(gè)數(shù).

1)如果小玲想的數(shù)是,請(qǐng)你通過(guò)計(jì)算幫助她告訴魔術(shù)師的結(jié)果;

2)如果小明想了一個(gè)數(shù)計(jì)算后,告訴魔術(shù)師結(jié)果為85,那么魔術(shù)師立刻說(shuō)出小明想的那個(gè)數(shù)是:__________

3)觀眾又進(jìn)行了幾次嘗試,魔術(shù)師都能立刻說(shuō)出他們想的那個(gè)數(shù).若設(shè)觀眾心想的數(shù)為,請(qǐng)你按照魔術(shù)師要求的運(yùn)算過(guò)程列代數(shù)式并化簡(jiǎn),再用一句話說(shuō)出這個(gè)魔術(shù)的奧妙.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在雙曲線yk0)上,連接OA,分別以點(diǎn)O和點(diǎn)A為圓心,大于OA的長(zhǎng)為半徑作弧,兩弧相交于D,E兩點(diǎn),直線DEx軸于點(diǎn)B,交y軸于點(diǎn)C(03),連接AB.若AB1,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)是邊長(zhǎng)為的正方形的對(duì)角線上的動(dòng)點(diǎn),過(guò)點(diǎn)分別作于點(diǎn)于點(diǎn),連接并延長(zhǎng),交射線于點(diǎn)交射線于點(diǎn),連接于點(diǎn)當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí)(不包括兩點(diǎn)),以下結(jié)論:①;②;③;④的最小值是.其中正確的是_______.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P1cm/秒的速度沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,設(shè)P、Q同時(shí)出發(fā)t秒時(shí),BPQ的面積為ycm2,已知yt的函數(shù)關(guān)系圖象如圖2所示(其中曲線OG為拋物線的一部分,其余各部分均為線段)所示,則下列結(jié)論:①BEBC;②當(dāng)t6秒時(shí),ABE PQB;③點(diǎn)P運(yùn)動(dòng)了18秒;④當(dāng)t秒時(shí),ABEQBP.其中正確的是( ).

A.①②B.①③④C.③④D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C = 90°,以AC為直徑的OAB于點(diǎn)D,連接OD,點(diǎn)EBC上, B E=DE

1)求證:DE是⊙O的切線;

2)若BC=6,求線段DE的長(zhǎng);

3)若∠B=30°,AB =8,求陰影部分的面積(結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),,與軸交于點(diǎn),直線經(jīng)過(guò),兩點(diǎn).

求拋物線的解析式;

上方的拋物線上有一動(dòng)點(diǎn)

①如圖,當(dāng)點(diǎn)運(yùn)動(dòng)到某位置時(shí),以為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)的坐標(biāo);

②如圖,過(guò)點(diǎn),的直線于點(diǎn),若,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案