【題目】已知,在矩形ABCD中,AB=4,BC=2,點M為邊BC的中點,點P為邊CD上的動點(點P異于C、D兩點)。連接PM,過點P作PM的垂線與射線DA相交于點E(如圖)。設CP=x,DE=y。
(1)寫出y與x之間的函數關系式 ▲ ;
(2)若點E與點A重合,則x的值為 ▲ ;
(3)是否存在點P,使得點D關于直線PE的對稱點D′落在邊AB上?若存在,求x的值;若不存在,請說明理由。
【答案】(1)y=-x2+4x(2)或(3)存在,當時,點D關于直線PE的對稱點D′落在邊AB上
【解析】
解:(1)y=-x2+4x。
(2)或。
(3)存在。
過點P作PH⊥AB于點H。
則
∵點D關于直線PE的對稱點D′落在邊AB上,
∴P D′=PD=4-x,E D′="ED=" y=-x2+4x,EA=AD-ED= x2-4x+2,∠P D′E=∠D=900。
在Rt△D′P H中,PH=2, D′P =DP=4-x,D′H=。
∵∠ E D′A=1800-900-∠P D′H=900-∠P D′H=∠D′P H,∠P D′E=∠P HD′ =900,
∴△E D′A∽△D′P H。∴,即,
即,兩邊平方并整理得,2x2-4x+1=0。解得。
∵當時,y=,
∴此時,點E已在邊DA延長線上,不合題意,舍去(實際上是無理方程的增根)。
∵當時,y=,
∴此時,點E在邊AD上,符合題意。
∴當時,點D關于直線PE的對稱點D′落在邊AB上。
(1)∵CM=1,CP=x,DE=y,DP=4-x,且△MCP∽△PDE,
∴,即。∴y=-x2+4x。
(2)當點E與點A重合時,y=2,即2=-x2+4x,x2-4x+2=0。
解得。
(3)過點P作PH⊥AB于點H,則由點D關于直線PE的對稱點D′落在邊AB上,可得△E D′A與△D′P H相似,由對應邊成比例得得關于x的方程即可求解。注意檢驗。
科目:初中數學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(0,-1).
(1)畫出△ABC關于原點O成中心對稱的圖形△A1B1C1;
(2)在(1)的條件下直接寫出點A1的坐標為______;B1的坐標為______;
(3)求出△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y1=x2tx-t+2與x軸交于點A,B(點A在點B的左側),過y軸上的點C(0,4),直線y2=kx+3交x軸,y軸于點M、N,且ON=OC.
(1)求出t與k的值.
(2)拋物線的對稱軸交x軸于點D,在x軸上方的對稱軸上找一點E,使△BDE與△AOC相似,求出DE的長.
(3)如圖2,過拋物線上動點G作GH⊥x軸于點H,交直線y2=kx+3于點Q,若點Q′是點Q關于直線MG的對稱點,是否存在點G(不與點C重合),使點Q′落在y軸上?,若存在,請直接寫出點G的橫坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙、丙、丁四位同學進行一次乒乓球單打比賽,要從中選出兩位同學打第一場比賽.
(1)請用樹狀圖法或列表法,求恰好選中甲、乙兩位同學的概率.
(2)若已確定甲打第一場,再從其余三位同學中隨機選取一位,求恰好選中乙同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC與△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.給出下列結論:①∠AFC=∠C;②DF=BF;③△ADE∽△FDB;④∠BFD=∠CAF.其中正確的結論是_____(填寫所有正確結論的序號).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點,E,F分別是線段BM,CM的中點.
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結論;
(3)當四邊形MENF是正方形時,求AD:AB的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,RtΔABC中,AB=AC,D、E是斜邊BC上兩點,∠DAE=45°,將ΔADC繞點A順時針旋轉90°后,得到ΔAFB,連接EF,下列結論:①ΔAED≌ΔAEF,②,③ΔABC的面積等于四邊形AFBD的面積,④,⑤BE+DC=DE,其中正確的是( )
A. ①②④B. ①③④C. ③④⑤D. ①③⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(2,3).雙曲線y=(x>0)的圖象經過BC的中點D,且與AB交于點E,連接DE.
(1)直接寫出k的值及點E的坐標;
(2)若點F是OC邊上一點,且FB⊥DE,求直線FB的解析式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com