【題目】如圖,已知AB=10,P是線(xiàn)段AB上的任意一點(diǎn),在AB的同側(cè)分別以AP、PB為邊作等邊三角形APC和等邊三角形PBD,連結(jié)CD.

(1)當(dāng)AP=6時(shí),求CD的長(zhǎng);

(2)當(dāng)AP為多少時(shí),CD的值最小,最小值是多少?

【答案】(1)2;(2)當(dāng)AP=5時(shí),CD的長(zhǎng)度最小,最小值是5.

【解析】

(1)如圖過(guò)CCE⊥ABE,過(guò)DDF⊥PBF,過(guò)DDG⊥CEG.即可得四邊形DFEG為矩形.根據(jù)等邊三角形的性質(zhì)及矩形的性質(zhì)求得EF=5,CG=,再利用勾股定理求得CD的長(zhǎng)即可;(2)在(1)的基礎(chǔ)上可得CD=當(dāng)CG=0時(shí),CD有最小值,由此求得CD的長(zhǎng)即可.

(1)如圖,過(guò)CCE⊥ABE,過(guò)DDF⊥PBF,過(guò)DDG⊥CEG.即可得四邊形DFEG為矩形.

∵AB=10,AP=6,

∴PB=4,

APC和△PBD是等邊三角形,CE⊥AB , DF⊥PB,

∴EP=AP=3,PF=PB=2,

∴EF=EP+FP=5.

Rt△DPF中,DP=4,PF=2,

由勾股定理求得DF=.

Rt△CEP中,PC=6,PE=3,

由勾股定理求得CE=.

由矩形的性質(zhì)可得,DG=EF=5,EG=DF,

∴CG=.

Rt△CGD中,DG=5,CG=,由勾股定理求得CD=2;

(2)如圖由(1)得,DG=EF=AB=5,CD≥DG,

∴CD= ,故CG=0時(shí),CD有最小值,

當(dāng)PAB中點(diǎn)時(shí),有CD=DG=5,

所以CD長(zhǎng)度的最小值是5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為提倡全民健身活動(dòng), 某社區(qū)準(zhǔn)備購(gòu)買(mǎi)羽毛球和羽毛球拍供社區(qū)居民使用, 某體育用品商店羽毛球每盒 10 元, 羽毛球拍每副 40 .該商店有兩種優(yōu)惠方案,方案一: 不購(gòu)買(mǎi)會(huì)員卡時(shí), 羽毛球享受 8.5 折優(yōu)惠, 羽毛球拍購(gòu)買(mǎi) 5 副(含5 副) 以上才能享受 8.5 折優(yōu)惠, 5 副以下必須按定價(jià)購(gòu)買(mǎi);方案二: 每張會(huì)員卡 20 元, 辦理會(huì)員卡時(shí), 全部商品享受 8 折優(yōu)惠設(shè)該社區(qū)準(zhǔn)備購(gòu)買(mǎi)羽毛球拍 6 副, 羽毛球盒, 請(qǐng)回答下列問(wèn)題:

(1)如果一位體育愛(ài)好者按方案一只購(gòu)買(mǎi)了 4 副羽毛球拍,求他購(gòu)買(mǎi)時(shí)所需要的費(fèi)用;

(2)用含的代數(shù)式分別表示該社區(qū)按方案一和方案二購(gòu)買(mǎi)所需要的錢(qián)數(shù);

(3)①直接寫(xiě)出一個(gè)的值, 使方案一比方案二優(yōu)惠;

直接寫(xiě)出一個(gè)的值, 使方案二比方案一優(yōu)惠

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】按照有關(guān)規(guī)定:距高鐵軌道 200米以?xún)?nèi)的區(qū)域內(nèi)不宜臨路新建學(xué)校、醫(yī)院、敬老院和集中住宅區(qū)等噪聲敏感建筑物.
如圖是一個(gè)小區(qū)平面示意圖,矩形ABEF為一新建小區(qū),直線(xiàn)MN為高鐵軌道,C、D是直線(xiàn)MN上的兩點(diǎn),點(diǎn)C、A、B在一直線(xiàn)上,且DA⊥CA,∠ACD=30°.小王看中了①號(hào)樓A單元的一套住宅,與售樓人員的對(duì)話(huà)如下:

(1)小王心中一算,發(fā)現(xiàn)售樓人員的話(huà)不可信,請(qǐng)你用所學(xué)的數(shù)學(xué)知識(shí)說(shuō)明理由;
(2)若一列長(zhǎng)度為228米的高鐵以252千米/小時(shí)的速度通過(guò)時(shí),則A單元用戶(hù)受到影響時(shí)間有多長(zhǎng)?
(溫馨提示: ≈1.4, ≈1.7, ≈6.1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】做大小兩個(gè)長(zhǎng)方體紙盒,尺寸如下(單位cm

(1)做這兩個(gè)紙盒共用料多少cm2?

(2)做大紙盒比做小紙盒多用料多少cm2

(3)如果a=8,b=6,c=5,24個(gè)小紙盒包裝成一個(gè)長(zhǎng)方體,這個(gè)長(zhǎng)方體的表面積的最小值為________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)l1;y=ax2+bx+c(a<0)經(jīng)過(guò)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為B(4,0),點(diǎn)A為頂點(diǎn),且直線(xiàn)OA的解析式為y=x.

(1)如圖1,求拋物線(xiàn)l1的解析式;
(2)如圖2,將拋物線(xiàn)l1繞原點(diǎn)O旋轉(zhuǎn)180°,得到拋物線(xiàn)l2 , l2與x軸交于點(diǎn)B′,頂點(diǎn)為A′,點(diǎn)P為拋物線(xiàn)l1上一動(dòng)點(diǎn),連接PO交l2于點(diǎn)Q,連接PA、PA′、QA′、QA.
請(qǐng)求:平行四邊形PAQA′的面積S與P點(diǎn)橫坐標(biāo)x(2<x≤4)之間的關(guān)系式;
(3)在(2)的條件下,如圖11﹣3,連接BA′,拋物線(xiàn)l1或l2上是否存在一點(diǎn)H,使得HB=HA′?若存在,請(qǐng)求出點(diǎn)H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC三個(gè)定點(diǎn)坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).

(1)請(qǐng)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1;
(2)以原點(diǎn)O為位似中心,將△A1B1C1放大為原來(lái)的2倍,得到△A2B2C2 , 請(qǐng)?jiān)诘谌笙迌?nèi)畫(huà)出△A2B2C2 , 并求出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,AC為對(duì)角線(xiàn),點(diǎn)E、F分別是邊BC、AD的中點(diǎn).
(1)求證:△ABE≌△CDF;
(2)若∠B=60°,AB=4,求線(xiàn)段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列4個(gè)命題: ①方程x2﹣( + )x+ =0的根是
②在△ABC中,∠ACB=90°,CD⊥AB于D.若AD=4,BD= ,則CD=3.
③點(diǎn)P(x,y)的坐標(biāo)x,y滿(mǎn)足x2+y2+2x﹣2y+2=0,若點(diǎn)P也在y= 的圖象上,則k=﹣1.
④若實(shí)數(shù)b、c滿(mǎn)足1+b+c>0,1﹣b+c<0,則關(guān)于x的方程x2+bx+c=0一定有兩個(gè)不相等的實(shí)數(shù)根,且較大的實(shí)數(shù)根x0滿(mǎn)足﹣1<x0<1.
上述4個(gè)命題中,真命題的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】水源村在今年退耕還林活動(dòng)中,計(jì)劃植樹(shù)200畝,全村在完成植樹(shù)40畝后,某環(huán)保組織加入村民植樹(shù)活動(dòng),并且該環(huán)保組織植樹(shù)的速度是全村植樹(shù)速度的1.5倍,整個(gè)植樹(shù)過(guò)程共用了13天完成.
(1)全村每天植樹(shù)多少畝?
(2)如果全村植樹(shù)每天需2000元工錢(qián),環(huán)保組織是義務(wù)植樹(shù),因此實(shí)際工錢(qián)比計(jì)劃節(jié)約多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案