【題目】如圖1,等邊△ABC的邊長(zhǎng)為3,分別以頂點(diǎn)B、A、C為圓心,BA長(zhǎng)為半徑作、、,我們把這三條弧所組成的圖形稱作萊洛三角形,顯然萊洛三角形仍然是軸對(duì)稱圖形,設(shè)點(diǎn)l為對(duì)稱軸的交點(diǎn).
(1)如圖2,將這個(gè)圖形的頂點(diǎn)A與線段MN作無(wú)滑動(dòng)的滾動(dòng),當(dāng)它滾動(dòng)一周后點(diǎn)A與端點(diǎn)N重合,則線段MN的長(zhǎng)為 ;
(2)如圖3,將這個(gè)圖形的頂點(diǎn)A與等邊△DEF的頂點(diǎn)D重合,且AB⊥DE,DE=2π,將它沿等邊△DEF的邊作無(wú)滑動(dòng)的滾動(dòng)當(dāng)它第一次回到起始位置時(shí),求這個(gè)圖形在運(yùn)動(dòng)過(guò)程中所掃過(guò)的區(qū)域的面積;
(3)如圖4,將這個(gè)圖形的頂點(diǎn)B與⊙O的圓心O重合,⊙O的半徑為3,將它沿⊙O的圓周作無(wú)滑動(dòng)的滾動(dòng),當(dāng)它第n次回到起始位置時(shí),點(diǎn)I所經(jīng)過(guò)的路徑長(zhǎng)為 (請(qǐng)用含n的式子表示)
【答案】(1)3π;(2)27π;(3)2nπ.
【解析】試題分析:(1)先求出的弧長(zhǎng),繼而得出萊洛三角形的周長(zhǎng)為3π,即可得出結(jié)論;
(2)先判斷出萊洛三角形等邊△DEF繞一周掃過(guò)的面積如圖所示,利用矩形的面積和扇形的面積之和即可;
(3)先判斷出萊洛三角形的一個(gè)頂點(diǎn)和O重合旋轉(zhuǎn)一周點(diǎn)I的路徑,再用圓的周長(zhǎng)公式即可得出.
試題解析:解:(1)∵等邊△ABC的邊長(zhǎng)為3,∴∠ABC=∠ACB=∠BAC=60°,,∴===π,∴線段MN的長(zhǎng)為=3π.故答案為:3π;
(2)如圖1.∵等邊△DEF的邊長(zhǎng)為2π,等邊△ABC的邊長(zhǎng)為3,∴S矩形AGHF=2π×3=6π,由題意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG==3π,∴圖形在運(yùn)動(dòng)過(guò)程中所掃過(guò)的區(qū)域的面積為3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;
(3)如圖2,連接BI并延長(zhǎng)交AC于D.∵I是△ABC的重心也是內(nèi)心,∴∠DAI=30°,AD=AC=,∴OI=AI==,∴當(dāng)它第1次回到起始位置時(shí),點(diǎn)I所經(jīng)過(guò)的路徑是以O為圓心,OI為半徑的圓周,∴當(dāng)它第n次回到起始位置時(shí),點(diǎn)I所經(jīng)過(guò)的路徑長(zhǎng)為n2π=2nπ.故答案為:2nπ.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】按要求畫(huà)圖
(1)如圖,平面上有五個(gè)點(diǎn)A,B,C,D,E. 按下列要求畫(huà)出圖形.
①連接BD;
②畫(huà)直線AC交BD于點(diǎn)M;
③過(guò)點(diǎn)A作線段AP⊥BD于點(diǎn)P;
④請(qǐng)?jiān)谥本AC上確定一點(diǎn)N,使B,E兩點(diǎn)到點(diǎn)N的距離之和最小(保留作圖痕跡).
(2)小強(qiáng)用5個(gè)大小一樣的正方形制成如圖所示的拼接圖形(陰影部分),請(qǐng)你在圖中的拼接圖形上再接一個(gè)正方形,使新拼接成的圖形經(jīng)過(guò)折疊后能成為一個(gè)封閉的正方體盒子.注意:只需添加一個(gè)符合要求的正方形,并用陰影表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線交于點(diǎn)O,下列哪組條件不能判斷四邊形ABCD是平行四邊形( ).
A. OA=OC,OB=OD B. ∠BAD=∠BCD,AB∥CD
C. AD∥BC,AD=BC D. AB=CD,AO=CO
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)是,的平分線交于點(diǎn),若點(diǎn)分別是和上的動(dòng)點(diǎn),則的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】元旦放假時(shí),小明一家三口一起乘小轎車(chē)去探望爺爺、奶奶和姥爺、姥姥.早上從家里出發(fā),向東走了5千米到超市買(mǎi)東西,然后又向東走了2.5千米到爺爺家,下午從爺爺家出發(fā)向西走了10千米到姥爺家,晚上返回家里.
(1)若以小明家為原點(diǎn),向東為正方向,用1個(gè)單位長(zhǎng)度表示1千米,請(qǐng)將超市、爺爺家和姥爺家的位置在下面數(shù)軸上分別用點(diǎn)A、B、C表示出來(lái);
(2)超市和姥爺家相距多少千米?
(3)若小轎車(chē)每千米耗油0.08升,求小明一家從出發(fā)到返回家,小轎車(chē)的耗油量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,菱形EFGH的三個(gè)頂點(diǎn)E、G、H分別在正方形的邊AB、CD、DA上,AH=1,聯(lián)結(jié)CF.
(1)當(dāng)DG=1時(shí),求證:菱形EFGH為正方形;
(2)設(shè)DG=x,△FCG的面積為y,寫(xiě)出y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
(3)當(dāng)DG=時(shí),求∠GHE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的2017年12月份的月歷表中,任意框出表中豎列上四個(gè)相鄰的數(shù),這四個(gè)數(shù)的和可能是:
A.60B.70C.80D.90
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C(0,3),已知對(duì)稱軸x=1.
(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個(gè)單位長(zhǎng)度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線L上任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 閱讀下列材料:我們知道
現(xiàn)在我們可以用這個(gè)結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式時(shí),令,求得;令,求得(稱-1,2分別為,的零點(diǎn)值).在有理數(shù)范圍內(nèi),零點(diǎn)值-1和2可將全體有理數(shù)分成不重復(fù)且不遺漏的如下3種情況:
①當(dāng)時(shí),原式;
②當(dāng)時(shí),原式;
③當(dāng)時(shí),原式.
綜上所述,
通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn):
(1)分別求出和的零點(diǎn)值;
(2)化簡(jiǎn)代數(shù)式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com