【題目】 閱讀下列材料:我們知道

現(xiàn)在我們可以用這個(gè)結(jié)論來(lái)化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式時(shí),令,求得;令,求得(稱(chēng)-1,2分別為,的零點(diǎn)值).在有理數(shù)范圍內(nèi),零點(diǎn)值-12可將全體有理數(shù)分成不重復(fù)且不遺漏的如下3種情況:

①當(dāng)時(shí),原式

②當(dāng)時(shí),原式

③當(dāng)時(shí),原式.

綜上所述,

通過(guò)以上閱讀,請(qǐng)你解決以下問(wèn):

(1)分別求出的零點(diǎn)值;

(2)化簡(jiǎn)代數(shù)式.

【答案】(1)的零點(diǎn)值為-2,的零點(diǎn)值是4.(2)當(dāng)時(shí),原式;當(dāng)-2x4,原式;當(dāng)時(shí),原式.

【解析】

1)根據(jù)題中所給材料,求出零點(diǎn)值;(2)將全體實(shí)數(shù)分成不重復(fù)且不遺漏的三種情況解答;

解:

1)令,解得,所以的零點(diǎn)值為-2,令,解得,所以的零點(diǎn)值是4.

2)當(dāng)時(shí),原式;

當(dāng)-2≤x≤4,原式;

當(dāng)時(shí),原式.

綜上所述:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,等邊ABC的邊長(zhǎng)為3,分別以頂點(diǎn)BA、C為圓心,BA長(zhǎng)為半徑作、,我們把這三條弧所組成的圖形稱(chēng)作萊洛三角形,顯然萊洛三角形仍然是軸對(duì)稱(chēng)圖形,設(shè)點(diǎn)l為對(duì)稱(chēng)軸的交點(diǎn).

(1)如圖2,將這個(gè)圖形的頂點(diǎn)A與線(xiàn)段MN作無(wú)滑動(dòng)的滾動(dòng),當(dāng)它滾動(dòng)一周后點(diǎn)A與端點(diǎn)N重合,則線(xiàn)段MN的長(zhǎng)為 ;

(2)如圖3,將這個(gè)圖形的頂點(diǎn)A與等邊DEF的頂點(diǎn)D重合,且ABDE,DE=2π,將它沿等邊DEF的邊作無(wú)滑動(dòng)的滾動(dòng)當(dāng)它第一次回到起始位置時(shí),求這個(gè)圖形在運(yùn)動(dòng)過(guò)程中所掃過(guò)的區(qū)域的面積;

(3)如圖4,將這個(gè)圖形的頂點(diǎn)BO的圓心O重合,O的半徑為3,將它沿O的圓周作無(wú)滑動(dòng)的滾動(dòng),當(dāng)它第n次回到起始位置時(shí),點(diǎn)I所經(jīng)過(guò)的路徑長(zhǎng)為 (請(qǐng)用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知yx的一次函數(shù),當(dāng)x1時(shí),y1;當(dāng)x=-2時(shí),y=-14.

(1)求這個(gè)一次函數(shù)的關(guān)系式;

(2)在如圖所示的平面直角坐標(biāo)系中作出函數(shù)的圖像;

(3)由圖像觀察,當(dāng)0x2時(shí),函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某品牌牛奶供應(yīng)商提供A,B,C,D,E五種不同口味的牛奶供學(xué)生選擇.某校為了了解學(xué)生對(duì)不同口味的牛奶的喜好,對(duì)全校訂牛奶的學(xué)生進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖所示兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:

(1)本次調(diào)查的學(xué)生有多少名?

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算出喜好C口味牛奶的學(xué)生人數(shù)對(duì)應(yīng)的扇形圓心角的度數(shù).

(3)該校共有1 200名學(xué)生訂了該品牌的牛奶,牛奶供應(yīng)商每天只為每名訂牛奶的學(xué)生配送一盒牛奶,要使學(xué)生每天都能喝到自己喜好的品味的牛奶,牛奶供應(yīng)商每天送往該校的牛奶中,B口味牛奶要比C口味牛奶約多送多少盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上兩點(diǎn)A、B對(duì)應(yīng)的數(shù)分別為—1,3,點(diǎn)P為數(shù)軸上一動(dòng)點(diǎn),其對(duì)應(yīng)的數(shù)為x。

⑴若點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等,求點(diǎn)P對(duì)應(yīng)的數(shù);

⑵數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)A、點(diǎn)B的距離之和為5?若存在,請(qǐng)求出x的值。若不存在,請(qǐng)說(shuō)明理由?

⑶當(dāng)點(diǎn)P以每分鐘一個(gè)單位長(zhǎng)度的速度從O點(diǎn)向左運(yùn)動(dòng)時(shí),點(diǎn)A以每分鐘5個(gè)單位長(zhǎng)度向左運(yùn)動(dòng),點(diǎn)B以每分鐘20個(gè)單位長(zhǎng)度向左運(yùn)動(dòng),問(wèn)它們同時(shí)出發(fā),幾分鐘后點(diǎn)P到點(diǎn)A、點(diǎn)B的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“十九大”之后,某種子站讓利給農(nóng)民,對(duì)價(jià)格為a元/千克的種子,如果一次購(gòu)買(mǎi)2千克以上的,超過(guò)2千克部分的種子價(jià)格打8折.某科技人員對(duì)付款金額和購(gòu)買(mǎi)量這兩個(gè)變量的對(duì)應(yīng)關(guān)系用列表法做了分析,并繪制出了函數(shù)圖象.以下是該科技人員繪制的圖象和表格的不完整資料,已知點(diǎn)A的坐標(biāo)為(2,10).請(qǐng)你結(jié)合表格和圖象:

付款金額(元)

a

7.5

10

12

b

購(gòu)買(mǎi)量(千克)

1

1.5

2

2.5

3

(1)、指出付款金額和購(gòu)買(mǎi)量哪個(gè)變量是函數(shù)的自變量x,并寫(xiě)出表中a、b的值;

(2)、求出當(dāng)x>2時(shí),y關(guān)于x的函數(shù)解析式;

(3)、甲農(nóng)戶(hù)將8.8元錢(qián)全部用于購(gòu)買(mǎi)該玉米種子,乙農(nóng)戶(hù)購(gòu)買(mǎi)了4165克該玉米種子,分別計(jì)算他們的購(gòu)買(mǎi)量和付款金額.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在紙面上有一數(shù)軸如圖,根據(jù)給出的數(shù)軸,解答下面的問(wèn)題:

1A表示數(shù) ,B表示數(shù) ,A,B兩點(diǎn)之間的距離是 。

2)折疊紙面.若在數(shù)軸上﹣1表示的點(diǎn)與5表示的點(diǎn)重合,回答以下問(wèn)題:

9表示的點(diǎn)與數(shù)  表示的點(diǎn)重合;

②若數(shù)軸上MN兩點(diǎn)之間的距離為2020MN的右側(cè)),且M、N兩點(diǎn)經(jīng)折疊后重合,求M、N兩點(diǎn)表示的數(shù)分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上有A,B兩點(diǎn),所表示的有理數(shù)分別為a、b,已知AB=12,原點(diǎn)O是線(xiàn)段AB上的一點(diǎn),且OA=2OB.

(1)a=   ,b=   

(2)若動(dòng)點(diǎn)P,Q分別從A,B同時(shí)出發(fā),向右運(yùn)動(dòng),點(diǎn)P的速度為每秒2個(gè)單位長(zhǎng)度,點(diǎn)Q的速度為每秒1個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng).

①當(dāng)t為何值時(shí),2OP﹣OQ=4;

②當(dāng)點(diǎn)P到達(dá)點(diǎn)O時(shí),動(dòng)點(diǎn)M從點(diǎn)O出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度也向右運(yùn)動(dòng),當(dāng)點(diǎn)M追上點(diǎn)Q后立即返回,以同樣的速度向點(diǎn)P運(yùn)動(dòng),遇到點(diǎn)P后再立即返回,以同樣的速度向點(diǎn)Q運(yùn)動(dòng),如此往返,直到點(diǎn)P,Q停止時(shí),點(diǎn)M也停止運(yùn)動(dòng),求在此過(guò)程中點(diǎn)M行駛的總路程,并直接寫(xiě)出點(diǎn)M最后位置在數(shù)軸上所對(duì)應(yīng)的有理數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《算法統(tǒng)宗》是中國(guó)古代數(shù)學(xué)名著,作者是我國(guó)明代數(shù)學(xué)家程大位.在《算法統(tǒng)宗》中記載:以繩測(cè)井,若將繩三折測(cè)之,繩多4尺,若將繩四折測(cè)之,繩多1尺,繩長(zhǎng)井深各幾何?

譯文:用繩子測(cè)水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問(wèn)繩長(zhǎng)、井深各是多少尺?

設(shè)井深為x尺,根據(jù)題意列方程,正確的是( 。

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

同步練習(xí)冊(cè)答案