【題目】元旦放假時,小明一家三口一起乘小轎車去探望爺爺、奶奶和姥爺、姥姥.早上從家里出發(fā),向東走了5千米到超市買東西,然后又向東走了2.5千米到爺爺家,下午從爺爺家出發(fā)向西走了10千米到姥爺家,晚上返回家里.

1)若以小明家為原點,向東為正方向,用1個單位長度表示1千米,請將超市、爺爺家和姥爺家的位置在下面數(shù)軸上分別用點A、B、C表示出來;

2)超市和姥爺家相距多少千米?

3)若小轎車每千米耗油0.08升,求小明一家從出發(fā)到返回家,小轎車的耗油量.

【答案】1)答案見解析;(27.5千米;(31.6

【解析】

1)由已知得:從家向東走了5千米到超市,則超市A表示5,又向東走了2.5,則爺爺家B表示的數(shù)為7.5,從爺爺家出發(fā)向西走了10千米到姥爺家,所以姥爺家C表示的數(shù)為7.510=﹣2.5,畫數(shù)軸如圖;

2)右邊的數(shù)減去左邊的數(shù)即可;

3)計算總路程,再根據(jù)耗油量=總路程×0.08即可求解.

1)點AB,C即為如圖所示;

25﹣(﹣2.5)=7.5(千米),

故超市和姥爺家相距7.5千米;

3)(5+2.5+10+2.5)×0.081.6(升),

故小轎車的耗油量是1.6升..

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=2x-4的圖象與x軸、y軸分別相交于點A、B,點P在該函數(shù)的圖象上,Px軸、y軸的距離分別為d1,d2

1)求點A,B的坐標(biāo);

2)當(dāng)P為線段AB的中點時,求d1+d2的值;

3)直接寫出d1+d2的范圍,并求當(dāng)d1+d2=3時點P的坐標(biāo);

4)若在線段AB上存在無數(shù)個點P,使d1+ad2=4a為常數(shù)),求a的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019325日是全國中小學(xué)生安全教育日,某中學(xué)為加強學(xué)生的安全意識,組織了全校800名學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績(得分取正整數(shù),滿分為100)進(jìn)行統(tǒng)計.請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖解題.

(1)這次抽取了 名學(xué)生的競賽成績進(jìn)行統(tǒng)計,其中:m= ,n=

(2)補全頻數(shù)分布直方圖.

(3)若成績在70分以下(70)的學(xué)生為安全意識不強,有待進(jìn)一步加強安全教育,則該校安全意識不強的學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載有這樣一道題:問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?這道題講的是:有一塊三角形沙田,三條邊長分別為5里,12里,13里,問這塊沙田面積有多大?題中是我國市制長度單位,1=500米,則該沙田的面積為(

A.750平方千米B.75平方千米C.15平方千米D.7.5平方千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019412日,在璧山區(qū)八塘鎮(zhèn)又迎來了一年一度的櫻桃節(jié),當(dāng)天真是熱鬧非凡,人山人海,為紅彤彤的櫻桃增添了異樣的色彩,八塘鎮(zhèn)位于璧山區(qū)最北邊的一個小鎮(zhèn),地處璧山區(qū)和北碚區(qū)的交界處,依托在巍峨的縉云山腳下,如圖,在縉云山山腳下西端A處與東端B處相距4100米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端坡角是45°,東端的坡角是30°,小軍的行走速度為/秒.若小明與小軍同時到達(dá)山頂C處,則小明的行走速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖(1),線段AB的兩個端點的坐標(biāo)分別為(-12,4)(0,10),點P從點B出發(fā),沿BA方向勻速向點A運動;同時,點Q從坐標(biāo)原點O出發(fā),沿x軸的反方向以相同的速度運動,當(dāng)點P到達(dá)點A時,P,Q兩點同時停止運動,設(shè)運動的時間為t秒,ΔOPQ的面積S(平方單位)與時間t(秒)之間的函數(shù)圖象如圖(2)所示。

(1)求點P的運動速度;

(2)求面積S與t的函數(shù)關(guān)系式及當(dāng)S最最大值時點P的坐標(biāo);

(3)點P是S取最大值時的點,設(shè)點M為x軸上的點,點N為坐標(biāo)平面內(nèi)的點,以點O,P,M,N為頂點的四邊形地矩形,請直接寫出點N的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點B的坐標(biāo)為(m,-2).

(1)求△AHO的周長;

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,AB=AC,把△ABC繞A點沿順時針方向旋轉(zhuǎn)得到△ADE,連接BD,CE交于點F.

(1)求證:△AEC≌△ADB;

(2)若AB=2,∠BAC=45°,當(dāng)四邊形ADFC是菱形時,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖

如圖1,四邊形ABCD和四邊形BCMD都是菱形,

1)求證:∠M=60°

2)如圖2,點E在邊AD上,點F在邊CM上,連接EFCD于點H,若AE=MF,求證:EH=HF;

3)如圖3,在第(2)小題的條件下,連接BH,若EFCM,AB=3,求BH的長

查看答案和解析>>

同步練習(xí)冊答案