【題目】某商場計劃購進甲、乙兩種商品共件,這兩種商品的進價、售價如表所示:
進價(元/件) | 售價(元/件) | |
甲種商品 | ||
乙種商品 |
設(shè)購進甲種商品(,且為整數(shù))件,售完此兩種商品總利潤為元.
(1)該商場計劃最多投入元用于購進這兩種商品共件,求至少購進甲種商品多少件?
(2)求與的函數(shù)關(guān)系式;
(3)若售完這些商品,商場可獲得的最大利潤是__________元.
【答案】(1)50件;(2);(3)795
【解析】
(1)根據(jù)表格中的數(shù)據(jù)和題意列不等式,根據(jù)且x為整數(shù)即可求出x的取值范圍得到答案;
(2)根據(jù)題意和表格中的數(shù)據(jù)即可得到函數(shù)關(guān)系式;
(3)根據(jù)(2)中的函數(shù)關(guān)系式和一次函數(shù)的性質(zhì)即可求出答案.
(1)由題意得15x+25(80-x),
解得x,
∵,且為整數(shù),
∴,且為整數(shù),
∴至少購進甲種商品50件;
(2)由題意得,
∴y與x的函數(shù)關(guān)系式是;
(3)∵,,且為整數(shù),
∴當x=1時,y有最大值,此時y最大值=795,
故答案為:795.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在正方形ABCD中,點E,F分別在AB,BC上,且AE=BF.
(1)試探索線段AF,DE的數(shù)量關(guān)系,寫出你的結(jié)論并說明理由;
(2)連接EF,DF,分別取AE,EF,FD,DA的中點H,I,J,K,則四邊形HIJK是什么特殊四邊形?請在圖2中補全圖形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0),與y軸交于C(0,3),拋物線頂點為D點.
(1)求此拋物線解析式;
(2)如圖1,點P為拋物線上的一個動點,且在對稱軸右側(cè),若△ADP面積為3,求點P的坐標;
(3)在(2)的條件下,PA交對稱軸于點E,如圖2,過E點的任一條直線與拋物線交于M,N兩點,直線MD交直線y=﹣3于點F,連結(jié)NF,求證:NF∥y軸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們約定:對角線互相垂直的凸四邊形叫做“正垂形”.
(1)①在“平行四邊形,矩形,菱形,正方形”中,一定是“正垂形”的有 ;
②在凸四邊形ABCD中,AB=AD且CB≠CD,則該四邊形 “正垂形”.(填“是”或“不是”)
(2)如圖1,A,B,C,D是半徑為1的⊙O上按逆時針方向排列的四個動點,AC與BD交于點E,∠ACB﹣∠CDB=∠ACD﹣∠CBD,當≤OE≤時,求AC2+BD2的取值范圍;
(3)如圖2,在平面直角坐標系xOy中,拋物線y=ax2+bx+c(a,b,c為常數(shù),a>0,c<0)與x軸交于A,C兩點(點A在點C的左側(cè)),B是拋物線與y軸的交點,點D的坐標為(0,﹣ac),記“正垂形”ABCD的面積為S,記△AOB,△COD,△AOD,△BOC的面積分別為S1,S2,S3,S4.試直接寫出滿足下列三個條件的拋物線的解析式;
①; ②; ③“正垂形”ABCD的周長為12.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形的邊長都是的正方形網(wǎng)格中,的三個頂點都在小正方形的格點上.將繞點旋轉(zhuǎn)得到(點、分別與點、對應(yīng)),連接,.
(1)請直接在網(wǎng)格中補全圖形;
(2)四邊形的周長是________________(長度單位)
(3)直接寫出四邊形是何種特殊的四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形中,,,,,,點從點出發(fā),以每秒單位的速度向點運動,點從點同時出發(fā),以每秒單位的速度向點運動,其中一個動點到達終點時,另一個動點也隨之停止運動,設(shè)運動時間為秒.
(1)當時,若以點,和點,,,中的兩個點為頂點的四邊形為平行四邊形,且線段為平行四邊形的一邊,求的值.
(2)若以點,和點,,,中的兩個點為頂點的四邊形為菱形,且線段為菱形的一條對角線,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位舉行“健康人生”徒步走活動,某人從起點體育村沿建設(shè)路到市生態(tài)園,再沿原路返回,設(shè)此人離開起點的路程s(千米)與徒步時間t(小時)之間的函數(shù)關(guān)系如圖所示,其中從起點到市生態(tài)園的平均速度是4千米/小時,用2小時,根據(jù)圖象提供信息,解答下列問題.
(1)求圖中的a值.
(2)若在距離起點5千米處有一個地點C,此人從第一次經(jīng)過點C到第二次經(jīng)過點C,所用時間為1.75小時.
①求AB所在直線的函數(shù)解析式;
②請你直接回答,此人走完全程所用的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1,格點△ABC(頂點在網(wǎng)格線的交點上)的頂點A、C的坐標分別為A(﹣3,4)C(0,2)
(1)請在網(wǎng)格所在的平面內(nèi)建立平面直角坐標系,并寫出點B的坐標;
(2)畫出△ABC關(guān)于原點對稱的圖形△A1B1C1;
(3)求△ABC的面積;
(4)在x軸上存在一點P,使PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點.
(1)求證:△ADP≌△ECP;
(2)若BP=nPK,試求出n的值;
(3)作BM丄AE于點M,作KN丄AE于點N,連結(jié)MO、NO,如圖2所示,請證明△MON是等腰三角形,并直接寫出∠MON的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com