【題目】如圖,在每個小正方形的邊長都是的正方形網(wǎng)格中,的三個頂點都在小正方形的格點上.將繞點旋轉(zhuǎn)得到(點、分別與點、對應(yīng)),連接,.
(1)請直接在網(wǎng)格中補全圖形;
(2)四邊形的周長是________________(長度單位)
(3)直接寫出四邊形是何種特殊的四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圖1中,A1,B1,C1分別是△ABC的邊BC,CA,AB的中點,在圖2中,A2,B2,C2分別是△A1B1C1的邊B1C1,C1A1,A1B1的中點,…,按此規(guī)律,則第n個圖形中平行四邊形的個數(shù)共有___個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,線段AB的兩個端點的坐標(biāo)分別為A (0,2),B(﹣1,0),點C為線段AB的中點,現(xiàn)將線段BA繞點B按逆時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)、經(jīng)過點D.
(1)如圖1,若該拋物線經(jīng)過原點O,且a=﹣1.
①求點D的坐標(biāo)及該拋物線的解析式;
②連結(jié)CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標(biāo),若不存在,請說明理由.
(2)如圖2,若該拋物線y=ax2+bx+c(a<0)經(jīng)過點E(﹣1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余,若符合條件的Q點的個數(shù)是4個,請直接寫出a的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=5,AB=9,求:
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長度;
(3)BE與DF的位置關(guān)系如何?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進(jìn)甲、乙兩種商品共件,這兩種商品的進(jìn)價、售價如表所示:
進(jìn)價(元/件) | 售價(元/件) | |
甲種商品 | ||
乙種商品 |
設(shè)購進(jìn)甲種商品(,且為整數(shù))件,售完此兩種商品總利潤為元.
(1)該商場計劃最多投入元用于購進(jìn)這兩種商品共件,求至少購進(jìn)甲種商品多少件?
(2)求與的函數(shù)關(guān)系式;
(3)若售完這些商品,商場可獲得的最大利潤是__________元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動點從原點O出發(fā),按向上.向右.向下.向右的方向依次平移,每次移動一個單位,得到點A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么點A2016的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點E是△ABC的內(nèi)心,AE的延長線與△ABC的外接圓相交于點D.
(1)若∠BAC=70°,求∠CBD的度數(shù);
(2)求證:DE=DB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲招聘一名部門經(jīng)理,對甲、乙、丙三名候選人進(jìn)行了三項素質(zhì)測試.各項測試成績?nèi)绫砀袼荆?/span>
測試項目 | 測試成績 | ||
甲 | 乙 | 丙 | |
專業(yè)知識 | 74 | 87 | 90 |
語言能力 | 58 | 74 | 70 |
綜合素質(zhì) | 87 | 43 | 50 |
(1)根據(jù)實際需要,公司將專業(yè)知識、語言能力和綜合素質(zhì)三項測試得分按4:3:1的比例確定每個人的測試總成績,此時誰將被錄用?
(2)請重新設(shè)計專業(yè)知識、語言能力和綜合素質(zhì)三項測試得分的比例來確定每個人的測試總成績,使得乙被錄用,若重新設(shè)計的比例為x:y:1,且x+y+1=10,則x= ,y= .(寫出x與y的一組整數(shù)值即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com