【題目】已知:點E是正方形ABCD中邊AB的中點.

1)如圖1,點T為線段DE上一點,連接BT并延長交AD于點M,連接AT并延長交CD于點N,且AMDN.試判斷線段AN與線段BM的關(guān)系,并證明;求證:點M是線段AD的黃金分割點.

2)如圖2,在AD邊上取一點M,滿足AM2DMDA時,連接BMDE于點T,連接AT并延長交DC于點N,求tanMTD的值.

【答案】1ANBMAN⊥BM;證明見解析;(2

【解析】

1AN=BM,ANBM.根據(jù)題目給出的條件證明ABM≌△DAN,從而得出AN=BM,∠ABM=DAN,進(jìn)而得出∠BAN+DAN=90°,得出∠ATB=90°,從而得出ANBM;根據(jù)題目給出的條件證明MDTTDA,得出DT2=MDAD,再證明DT=AM,即可證明點M是線段AD的黃金分割點;

2)延長BM,CD交于點F,證明FMDBMA,得出DMAB=AMDF,再根據(jù)ABCD得出DF=DN=AM,進(jìn)而證明ABM≌△DAN,可得∠ATB=90°,證得∠ABM=ETB=MTD,不妨設(shè)正方形的邊長為1.設(shè)AM=x,由AM2=MDAD,得x2=1-x1,求出AM的值,然后根據(jù)銳角三角函數(shù)的定義解答即可.

解:(1ANBM,AN⊥BM

理由如下:

四邊形ABCD是正方形,

∴ABDA,∠BAD∠ADC90°,又AMDN,

∴△ABM≌△DANSAS),

∴∠ABM∠DAN,ANBM

∠BAD90°∠BAN+∠DAN90°,

∴∠BAN+∠ABM90°

∴∠ATB90°,

∴AN⊥BM

∴ANBM,AN⊥BM;

證明:∵∠ATB90°MAB中點.

∴TEBEAE,

∴∠EBT∠ETB,∠EAT∠ATE

∠ABM∠DAN,∠ETB∠MTD,

∴∠MTD∠DAN,

∠MDT∠ADT,

∴△MDT△TDA

,

∴DT2MDAD

AB∥CD,可得∠TND∠EAT,又∠EAT∠ATE∠ATE∠DTN,

∴∠TND∠DTN

∴DTDN,又AMDN

∴DTAM,

DT2MDAD,

∴AM2MDAD,

M是線段AD的黃金分割點;

2)延長BMCD交于點F,如圖.

四邊形ABCD是正方形,ABCD,

∴∠FMBA,又FMDAMB

∴△FMDBMA,

,即DMABAMDF,

ABAD,AM2DMAD,

AMDF,

ABCF,

AEBE,

DFDNAM,

ABAD,BAMADN90°,DNAM,可證ABM≌△DANSAS),

∴∠ABMDAN

∴∠ABT+∠TABTAB+∠DANspan>BAD90°,

∴∠ATB90°

AEBE,

BEET

∴∠ABMETBMTD,

設(shè)正方形的邊長為1.設(shè)AMx,由AM2MDAD,

x2=(1x1

,

又負(fù)值不合題意,舍去.

,

Rt△ABM中,

ABMMTD,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形中,AB=8BC=6,過對角線中點的直線分別交,邊于點,.

(1)求證:四邊形是平行四邊形;

(2)當(dāng)四邊形是菱形時,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方形ABCD中,GCD邊中點,連接AG并延長交BC邊的延長線于E點,對角線BDAGF點.已知FG2,則線段AE的長度為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的頂點O在坐標(biāo)原點,頂點Ax軸上,B120°,OA4,將菱形OABC繞原點順時針旋轉(zhuǎn)105°OA′B′C′的位置,則點B′的坐標(biāo)為(  )

A. (2,﹣2)B. (,-)C. (2,﹣2)D. (,-)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線yx+6y軸交于點A,與x軸交于點B,點E為線段AB的中點,∠ABO的平分線BDy軸相交于點DA、C兩點關(guān)于x軸對稱.

1)一動點P從點E出發(fā),沿適當(dāng)?shù)穆窂竭\動到直線BC上的點F,再沿適當(dāng)?shù)穆窂竭\動到點D處.當(dāng)P的運動路徑最短時,求此時點F的坐標(biāo)及點P所走最短路徑的長;

2)點E沿直線y3水平向右運動得點E',平面內(nèi)是否存在點M使得以DB、M、E'為頂點的四邊形為菱形,若存在,請直接寫出點E′的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,AB是⊙O的直徑,點C是弧AB的中點,點D是弧BC的中點,連接AC,BC,ADBD,且ADBC相交于點F,延長ACE,使ACEC,連接EBAD的延長線于點G

1)求證:EB是⊙O的切線;

2)求證;AF2BD

3)求證:線段BG是線段CF和線段EG的比例中項.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣21),B1,n)兩點.

根據(jù)以往所學(xué)的函數(shù)知識以及本題的條件,你能提出求解什么問題?并解決這些問題(至少三個問題).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCD,∠B=90°,AB=1,CD=2BC=m,點P是邊BC上一動點,若△PAB與△PCD相似,且滿足條件的點P恰有2個,則m的值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

)已知,若二次函數(shù)圖象與軸有唯一公共點,求的值;

)已知

)當(dāng)時,二次函數(shù)圖象與軸有且只有一個公共點,求的取值范圍;

)當(dāng)時,有最小值,求的值.

查看答案和解析>>

同步練習(xí)冊答案